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Abstract. In traditional diffusion MRI, short pulsed field gradients
(PFG) are used for the diffusion encoding. The standard Stejskal-Tanner
sequence uses one single pair of such gradients, known as single-PFG
(sPFG). In this work we describe how trajectories in q-space can be used
for diffusion encoding. We discuss how such encoding enables the exten-
sion of the well-known scalar b-value to a tensor-valued entity we call the
diffusion measurement tensor. The new measurements contain informa-
tion about higher order diffusion propagator covariances not present in
sPFG. As an example analysis, we use this new information to estimate
a Gaussian distribution over diffusion tensors in each voxel, described by
its mean (a diffusion tensor) and its covariance (a 4th order tensor).

1 Introduction

In diffusion MRI (dMRI), each millimeter-size voxel of the image contains en-
coded information on the micrometer-scale translational displacements of the
water [1]. The vast majority of applications today focus on the simplest form
of the original MRI diffusion experiment, implemented by the Stejskal-Tanner
pulse sequence [2]. This sequence is based on a pair of short pulsed diffusion
encoding gradients, which we will refer to as the single pulsed field gradient
(sPFG) experiment. sPFG typically is used in diffusion tensor imaging (DTI),
enabling popular measures such as the mean diffusion (apparent diffusion co-
efficient, ADC) and diffusion anisotropy (Fractional Anisotropy, FA). Although
current popular diffusion measures are very sensitive to changes in the cellular
architecture, they are not very specific regarding the type of change.

We are at the cusp of a completely new generation of diffusion MRI tech-
nologies, such as oscillating gradients [3], double pulsed-field gradient (dPFG)
sequences [4–6], and more general waveform sequences [7]. These methods are
transforming what is possible to measure, and have the potential to vastly im-
prove tissue characterization using diffusion MRI. Our work adds to this new
generation of non-conventional pulse sequences. Our method can probe features
of micron-scale transport processes (and thus microstructure) that are invisi-
ble with sPFG. Fig. 1 shows three example structures (voxel distributions) that
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Fig. 1. Examples of globally isotropic distributions of structures within a voxel. These
different structures are indistinguishable with traditional sPFG diffusion MRI.

would be indistinguishable using DTI. The aim of our work is the development
of methods that can clearly distinguish these types of very different tissue archi-
tectures in clinical dMRI. In this paper, we present a new diffusion measurement
framework and an example framework for analysis of the data we acquire. To-
gether, these contributions enable us to quantify and distinguish distributions
such as those in Fig. 1.

2 Theory

In conventional pulsed field gradient diffusion MRI, the diffusion encoding is
achieved by applying a pair of short gradient pulses separated by a diffusion time.
Such a measurement probes along a single axis in q-space. Here we will explore
more general scenarios with time-varying gradients that probe trajectories in q-
space. The geometry of the diffusion encoding can in the Gaussian approximation
regime be described by a diffusion “measurement tensor,” or “encoding tensor,”
which extends the traditional b-value to a tensor-valued entity. Here we define
this measurement tensor by

B =

∫ τ

0

q(t)qT(t) dt , where q(t) = γ

∫ t

0

g(t′)dt′ (1)

where g(t) is the time-dependent gradient, τ is the echo time, and γ is the
gyromagnetic ratio. In this general case when the q-vector is built up by a time-
dependent gradient to traverse an arbitrary path in q-space, the rank of the
diffusion encoding tensor depends on the path, and is 1 in the case of sPFG, 2
for double-PFG, and 3 in the isotropic encoding case such as the triple-PFG [8]
or q-MAS [9]. The conventional b-value is given by b = Tr(B), the trace of B.

For example, a planar diffusion encoding tensor, i.e. an encoding that is rota-
tionally symmetric in the plane (Fig. 2, left), can be achieved by a set of time
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varying gradients (middle) that produce a planar q-space trajectory (right). Ideal
planar encoding could be produced by a circular path in q-space. However, q-
space encoding inevitably starts at the origin of q-space, so the path in Fig. 2
(right) is one way to obtain the planar encoding in practice. Constant angular
b-value encoding can be ensured by varying the speed of the traversal in q-space,
by using slower speed at low q-values, since the b-value is a function of both time
and q-value. At a low q, a long diffusion time can build up the same encoding
power (b-value), as a higher q-value with a shorter diffusion time.
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a) measurement tensor b) x-,y-,z- gradients c) q-space trajectory

Fig. 2. An example of time varying gradients (a) that produce a q-space trajectory (b)
and a planar measurement tensor in b-value encoding space (c)

To generate measurement tensors B with general shapes one can start with
q-space trajectory q0(t) that produces a diffusion measurement tensor B0 =∫ τ

0 q0(t)q0(t)
T dt and scale the trajectory with an affine transform M yielding

the new curve q(t) = Mq0(t). This results in a new diffusion measurement tensor
B,

B =

∫ τ

0

Mq0(t) (Mq0(t))
T

dt (2)

= M

(∫ τ

0

q0(t)q0(t)
T dt

)
MT = M B0 MT (3)

The special case of transforming a normalized isotropic curve, B0 = I, produces
the simple relation B = MMT between the affine transform and the resulting
measurement tensor.

We denote dMRI with encoding performed using arbitrary trajectories of q(t)
as q-space trajectory imaging (QTI). The measurement tensors allowed by QTI
enable the separation of orientation dispersion and underlying macroscopical
dispersion [10–12]. Below we propose an example analysis of QTI data where we
estimate a distribution over diffusion tensors at each voxel.

3 Methods

We implemented q-space trajectory imaging (QTI) on a clinical MRI scanner
(Philips Achieva 3T). Imaging parameters were: TE = 160 ms, Tr(B) = b = 0,
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Fig. 3. Plot of five different q-space trajectories, with x-y-z axes (left). By varying
the trajectory of q, diffusion encoding tensors of varying shapes can be produced. The
color coding links the q-space trajectories (left) with the corresponding measurement
tensors (right). The curve q(t)iso produces a spherical b-value encoding.
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Fig. 4. MR signal from the five different types of trajectories in Fig 3, applied in two
different directions in q-space. The five types of trajectories produce measurement B-
tensors with (from left to right) linear, prolate, isotropic, oblate, and planar shapes.
Note that the linear and the planar measurement are orthogonal/dual, and thus, where
the linear measurement is bright the planar is dark; see blue and green arrows.

250, 500, 1000 and 2000 s/mm2, voxel size = 3× 3× 3 mm3. The time varying
gradients were designed to produce q-space trajectories generating linear, pro-
late, isotropic, oblate, and planar diffusion measurement tensors, which all were
cylindrically symmetric, with the symmetry axis rotated into directions speci-
fied by the icosahedron, dodecahedron, and the truncated icosahedron. Despite
the rather long TE due to our prototype implementation, the resulting diffusion
encoded images were of a high image quality (Fig. 4).
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3.1 Example Analysis: Estimating a Distribution over Diffusion
Tensors

We propose an example analysis to demonstrate that we can measure additional
microstructure information using QTI. Consider a system composed by a col-
lection of environments, where in each environment the diffusion is Gaussian
and described by the diffusion tensor D (as in Fig. 1). We propose to compactly
model these microenvironments within a voxel with a Gaussian distribution over
tensors. The tensor D is then a stochastic variable with expectation D = 〈D〉.
The covariance of D is given by a 4th-order tensor Σ of size 3 × 3 × 3 × 3 [13].
The description is simplified by using Voigt notation, which allows the diffusion
tensor, which is normally expressed as a 3× 3 matrix,

D =

⎛
⎝ Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎠ (4)

to be represented as a 1× 6 vector

d =
(
Dxx Dyy Dzz

√
2Dxy

√
2Dxz

√
2Dyz

)T
(5)

allowing the fourth order 4th-order tensor Σ to be represented by a 6×6 variance-
covariance matrix (S), defined using the ordinary definition of the covariance
matrix S = 〈ddT〉 − 〈d〉〈d〉T, and in full given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

Σxxxx Σxxyy Σxxzz

√
2Σxxxy

√
2Σxxxz

√
2Σxxyz

Σyyxx Σyyyy Σyyzz

√
2Σyyxy

√
2Σyyxz

√
2Σyyyz

Σzzxx Σzzyy Σzzzz

√
2Σzzxy

√
2Σzzxz

√
2Σzzyz√

2Σxyxx

√
2Σxyyy

√
2Σxyzz 2Σxyxy 2Σxyxz 2Σxyyz√

2Σxzxx

√
2Σxzyy

√
2Σxzzz 2Σxzxy 2Σxzxz 2Σxzyz√

2Σyzxx

√
2Σyzyy

√
2Σyzzz 2Σyzxy 2Σyzxz 2Σyzyz

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

To estimate S, consider the diffusion encoded MR-signal E from a system
composed of multiple environments, each having Gaussian diffusion,

E(B) =
〈
exp (− < B,D >)

〉
=

〈
exp

(−bTd
) 〉

(7)

where < · , · > is the inner product, which with Voigt notation is simplified

to a vector inner product < B,D >= bTd and
〈〉

represent integration over

the distribution in the voxel. Expanding the logarithm of E around B = 0
(derivation omitted), reveals a key relationship

logE(b) ≈ −bTd+
1

2
bT

Sb (8)

where d is the mean value of d. The equation is superficially similar to the model
used in Diffusional Kurtosis Imaging (DKI), however, the fourth order kurtosis
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tensor employed in sPFG DKI only has 15 unique elements in contrast to the
21 elements required to fully specify S. QTI enables the probing of these 6 extra
dimensions (21-15), not visible with sPFG. To estimate the covariance S (6x6
representation of the 4th-order tensor Σ) from a set of dMRI measurements, first
note that

bT
Sb =< bbT, S >=< B, S >= �

T
� (9)

where � and � are the Voigt representation of � = bbT and S, as 21×1 vectors.
Since Eq. 8 is a linear model, we may estimate d and � using pseudoinversion to
solve the following equation system⎛

⎜⎝
logE1

...
logEm

⎞
⎟⎠ =

⎛
⎜⎝
1 − bT

1
1
2�

T
1

...
...

...
1 − bT

m
1
2�

T
m

⎞
⎟⎠(

E0 d �
)T

(10)

In total, the model has 1+6+21 free parameters. (E0,d, �), The 21 parameters
of the 4th-order tensor are difficult to interpret individually. The isotropic 4th-
order tensor has, however, two components [14]

Siso = s1 E1 + s2 E2 (11)

which in the field of mechanics are interpreted as bulk and shear modulus of the
4th-order stress tensor. The bases are given by

E1 =
1

3
eeT and E2 =

3√
45

(I− E1) (12)

where I is the 6 × 6 identity matrix. Note that E1 and E2 are orthogonal and
normalized, i.e. < Ei,Ej >= δij . Expressed in full, these matrices assume simple
structures according to

E1 =
1

3

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

E2 =
1√
45

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

Similarly to estimating the mean diffusivity MD by projecting the diffusion ten-
sor on its isotropic basis element, E = I/3 (with I being the identity matrix),
MD =< D,E >, we can project the estimated 4th-order covariance matrix onto
its two isotropic basis elements E1 and E2 and obtain the parameters s1 and s2.
These parameters can be interpreted as the bulk variation of diffusion tensors
(i.e. variation in size) and the shear of them (i.e. variation between directions).
Hence, s2 contains information about microscopic anisotropy, and would give a
high value for a system containing anisotropic microscopic compartments (Fig. 1,
left), and a low value for isotropic compartments (Fig. 1, middle). On the other
hand, s1 reflects variation of mean diffusivities and would yield a low value if all
microscopic compartments are similar in this respect (Fig. 1, left), but a high
value if they are not (Fig. 1, middle).
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Fig. 5. Bulk and shear modulus, s1, s2 estimated from fourth order QTI model, and
FA from the DTI model

4 Results

Figure 5 shows the result of estimating the bulk and shear variation (s1 and s2)
from QTI. The map of s1 shows high values in regions where we expect both
tissue and cerebrospinal fluid in the voxels, which leads to a high variability in
mean diffusivities. By contrast, the map of s2 is high and uniform in the white
matter where variability in diffusivities is driven by the combination of high
anisotropy and random orientations of the underlying microscopic environments.
Since the analysis was performed on the isotropic components of the 4th order
tensor, we know that all voxels have high orientation dispersion and thus s1
reflects only underlying anisotropy. In contrast to FA from DTI, s1 is high in
regions of crossing fibers with a high orientation dispersion.

5 Discussion and Conclusions

QTI enables diffusion encoding with a general measurement tensor B. Although
the “b-matrix” concept is well established, and can be found in standard text
books on diffusion NMR and MRI, the characterization of the b-matrix us-
ing double-PFG, and more general gradient wave form diffusion MRI is novel
and different. In current literature, the concept of b-matrix normally refers to
the standard rank-one measurement (in our terminology) with added imaging
gradient and other correction terms. Extending the traditional rank-1 diffusion
measurement, to rank-2 and full rank-3 measurements, allows for measuring in-
formation that was previously not attainable.

Our work shows that it is possible to perform diffusion encoding imaging of the
human brain with arbitrary q-space trajectories while maintaining good SNR,
and generalizes the concept of b-values enabling new types of measurements not
available with sPFG.
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