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This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-
space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we pro-
pose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast
to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Thenwe propose amicro-
structure model, the diffusion tensor distribution (DTD)model, which takes advantage of additional information
provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework en-
ablesmicrostructuremodeling that is not possiblewith the traditional pulsed gradient encoding as introduced by
Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a
tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors
of rank 2 or 3 enable estimation of the mean and covariance of the DTDmodel in terms of a second order tensor
(the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination
of the sizes, shapes, and orientations of diffusionmicroenvironmentswithin tissue.We derive rotationally invari-
ant scalar quantities describing intuitive microstructural features including size, shape, and orientation coher-
ence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study
comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived
from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences
between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity
that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study
of complex tissue architecture.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

DiffusionMRI (dMRI) encodes information on translational displace-
ments of water on the micrometer scale (Callaghan, 2011). Thus, the
dMRI signal is an excellent probe for microstructural geometries in
tissue such as the human brain. In dMRI, each millimeter-scale mea-
surement contains an aggregate of information from a multitude of mi-
croscopic environments (microenvironments). The goal of our work is
spital, Harvard Medical School,

n).
to disentangle the micrometer-scale information from these different
microenvironments. In this paper we introduce a mathematical frame-
work for advanced diffusion encoding, q-space trajectory imaging
(QTI), andwe propose amodel for QTI data analysis, the diffusion tensor
distribution (DTD). The QTI framework has been designed to improve
discrimination of the sizes, shapes, and orientations of diffusion micro-
environmentswithin tissue. In the rest of this section,we describe relat-
edwork for both aspects of our research: the diffusion encoding and the
data modeling. We then give a summary of the main contributions of
this paper.

The vast majority of dMRI applications today are based on the
Stejskal–Tanner pulse sequence (Stejskal and Tanner, 1965), which
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Table 1
Relationship between diffusion imaging method, diffusion encoding technique, q-space
sampling strategy, and data modeling methods for current diffusion imaging paradigms
and QTI. Example measures include fractional anisotropy (FA), microscopic FA (μFA),
and microscopic anisotropy (Cμ).

Method Diffusion
encoding

q-space sampling Example model/example
measure

DTI SDE single shell diffusion tensor/FA
HARDI SDE single- or multi-shell orientation distribution

functions
DSI SDE Cartesian sampling 3-D diffusion propagator
DKI SDE multi-shell kurtosis
– DDE typically single-shell μFA
– TDE typically single-shell single-shot diffusion trace
QTI trajectory encoding multi-trajectory DTD/Cμ
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employs a single pair of pulsed magnetic field gradients for diffusion
encoding. Here we refer to this sequence as the single diffusion
encoding (SDE) experiment. The SDE technique is typically used in con-
ventional diffusion tensor imaging (DTI) for quantification of measures
such as the mean diffusivity (MD), the apparent diffusion coefficient
(ADC) and the fractional anisotropy (FA) (Basser and Pierpaoli, 1996).
Techniques more advanced than DTI, such as high angular resolution
diffusion imaging (HARDI) (Tuch, 2004) andmeasurements of biophys-
ical features such as axonal diameter (Assaf et al., 2008; Nilsson et al.,
2013a), are also typically based on the SDE experiment.

Measures derived from conventional SDE can identify subtle
changes in tissue, but most measures provide limited insight into the
nature of that change (Assaf and Pasternak, 2008; Alexander et al.,
2001; Szczepankiewicz et al., 2015). For example, many factors such
as cell death, edema, inflammation, demyelination, increase in extracel-
lular or intracellular water and partial volume effects, may cause similar
changes in FA (Assaf and Pasternak, 2008; Bihan and Johansen-Berg,
2012; Jones et al., 2013; Vos et al., 2012; O'Donnell and Pasternak,
2015). This limited specificity impedes our ability to relate measures
from SDE to local anatomical changes and neuropathologies. Some of
these limitations are specific to DTI and can be resolved by biophysical
modeling and measurements with different diffusion times (Assaf
et al., 2008; Nilsson et al., 2013a). Other limitations are inherent for
SDE, for example its inability to disentangle variation in size and
shape without prior information (Lasič et al., 2014).

Alternative encodingmethods have the potential to significantly im-
prove tissue characterization beyondwhat is possiblewith SDE and DTI,
increasing the sensitivity to microstructure. Such methods can, for ex-
ample, provide information about distributions of cell shapes, sizes
and membrane properties within a voxel (Özarslan and Basser, 2008;
Nilsson et al., 2013b). Many techniques have been proposed for ad-
vanced diffusion encoding. Some techniques employ multiple pairs of
pulsed field gradients, where each pair performs a measurement in a
certain direction, to render the MR signal sensitive to higher order mo-
ments of the diffusion process. This category includes double diffusion
encoding (DDE) sequences (Cory et al., 1990; Mitra, 1995; Callaghan
and Komlosh, 2002; Özarslan and Basser, 2008; Lasič et al., 2011) and
even triple diffusion encoding (TDE) sequences (Wong et al., 1995;
Valette et al., 2012; Topgaard, 2015; Eriksson et al., 2015). We are
here using the recently proposed consensus nomenclature for diffusion
methods extending beyond Stejskal and Tanner's design (Shemesh
et al., 2016).

An alternative to multiple pulsed field gradients is to use time-
varying gradients that are not pulsed, such as oscillating gradients
(Does et al., 2003), optimized gradient shapes (Drobnjak and
Alexander, 2011), and rotating gradient fields or circularly polarized os-
cillating gradients (Lundell et al., 2015; Özarslan et al., 2014). Our initial
work used time-varying gradients to achieve an isotropic diffusion
encoding (Eriksson et al., 2013), which canmeasure the trace of the dif-
fusion tensor in a single shot. Recently, we have extended this work to
investigate the use of more general time-varying gradients that specify
a trajectory in q-space (Westin et al., 2014a), whichwe call q-space tra-
jectory encoding (QTE). By independently varying the experimental
variables of the q-space trajectories, one can record a multidimensional
dataset with information about the correlations between the observ-
ables in the different dimensions. Conceptually analogous multi-
dimensional approaches revolutionized the field of nuclear magnetic
resonance (NMR) spectroscopy (Ernst et al., 1987) and were adapted
to other techniques such as IR spectroscopy (Siria et al., 2013). We
therefore refer to these newencodingmethods asmultidimensional dif-
fusionMRI, since they add additional dimensions to the acquisition that
can be used to disentangle underlying features of the tissue.

Diffusion imagingmethods are generally defined in terms of a diffu-
sion encoding strategy plus a model of the signal. For example, for DTI,
DKI (diffusional kurtosis imaging) and QTI we have the encoding and
modeling relationships described in Table 1. In this work, we extend
the diffusion tensor model with a fourth-order tensor that describes
the covariance of diffusion tensors within a voxel, allowing us to define
a novel yet intuitive diffusion tensor distribution model. Providing a
complete overview of all proposed diffusion signal models is out of
the scope of the current work. However, higher-order tensor models
have previously been used to characterize non-Gaussian diffusion (Liu
et al., 2004), in diffusional kurtosis imaging (DKI) (Jensen et al., 2005)
and in describing the variability of diffusion tensors estimated from
DTI (Basser and Pajevic, 2007). Diffusion tensor distributions have also
been considered in the context of crossing fibers (Jian and Vemuri,
2007).

The QTI framework has been designed to improve discrimination of
microenvironments within tissue. It is well known that the traditional
FA measure confounds the dispersion of orientations with the shape of
the microenvironments: in large white matter fiber bundles with one
orientation, the FA reflects the geometry of the microenvironments,
while in crossing fibers, the multiple fiber orientations will reduce the
measured FA, confounding the connection to microstructure. The true
microscopic anisotropy of the microenvironments has recently been
modeled and estimated using DDE techniques (Lawrenz et al., 2010;
Jespersen et al., 2013) and using isotropic diffusion encoding (Lasič
et al., 2014). These microscopic FA (μFA) measurements are not con-
founded by orientation dispersion. In the current work, we introduce a
distributional framework that naturally models orientation dispersion
and microscopic anisotropy.

Within the QTI framework, we find that the familiar b-value natural-
ly extends to a tensor-valued entity, a diffusion measurement tensor,
which we call the b-tensor (Westin et al., 2014b). The b-tensor de-
scribes the second-order moment of the trajectory in q-space of the dif-
fusion gradient during an experiment. In current literature, the b-tensor
is often referred to as the b-matrix. Although the b-matrix concept is
well established and can be found in standard text books on diffusion
NMR andMRI as a means to correct for crossterms from imaging gradi-
ents (Karlicek and Lowe, 1980; Mattiello et al., 1997; Callaghan, 2011;
Price, 2009), the characterization of the b-matrix for gradient diffusion
encoding waveforms is a novel concept.

For the first time, we demonstrate estimation of a per-voxel diffu-
sion tensor distribution directly from dMRI data. Using measurements
obtained with trajectory encoding, we extend the diffusion tensor
model with a fourth-order tensor that describes the covariance of diffu-
sion tensors within a voxel, allowing us to define a novel yet intuitive
diffusion tensor distribution model. We demonstrate that this estima-
tion is possible with trajectory encoding but not with the traditional
SDE. We use the concept of general b-tensor measurements, with mul-
tiple tensor shapes, to estimate the DTD. We compactly describe the
DTD with a mean and covariance, and we show that the covariance in-
formation can be divided into two parts related to bulk and shear inma-
terials science.We propose to separate the bulk and shear variances into
measures that may be more intuitively meaningful, with the goal of
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separating size, shape, and orientation coherence. Finally, we demon-
strate the clinical feasibility of QTI in a preliminary study of patients
with schizophrenia and healthy controls.

Theory

QTI is a mathematical framework that combines trajectory encoding
with a proposed data model, the diffusion tensor distribution. We de-
scribe how to use QTI to measure moments of the DTD and how to
quantify these moments by invariant parameters that define micro-
structure information. We will explain how the new types of diffusion
encodings can distinguish tissue architectures that are indistinguishable
with conventional SDE-based dMRI. We motivate this here with a syn-
thetic example: Fig. 1 (top row) shows three diffusion tensor distribu-
tions that would all appear isotropic in an SDE experiment. Hence,
theywould be indistinguishable with conventional SDE-based dMRI se-
quences such as DTI, HARDI, DSI, and DKI. The proposed QTI framework
can distinguish between these different cases to enable quantification of
such differences in microstructure.

Throughout this paper, we will represent first-order tensors,
i.e., vectors, by boldface italic letters (e.g. n, size 3 × 1), second-order
tensors by boldface capital letters (e.g. D), and fourth-order tensors by
blackboard bold capital letters (e.g. ℂ). Second-order tensors can be
represented by 3 × 3 matrices, or if symmetric, in Voigt notation as
vectors which we here express by corresponding lower-case letters
(e.g. d, size 6 × 1). Fourth-order tensors can be expressed using
3 × 3 × 3 × 3 elements. Symmetric fourth-order tensors can be repre-
sented more compactly by matrices (e.g. ℂ, size 6 × 6) or as vectors in
Voigt notation (e.g. ℂ, size 21 × 1). The notation is explained in detail
in Appendix A.
Fig. 1. Synthetic examples of diffusion tensor distributions that cannot be differentiated usin
distinguished using the proposed QTI framework. The first row shows synthetic examples o
tensor 〈D〉. As a consequence, these different structures are indistinguishable with convention
The DTD model includes average diffusion tensors, shown by 3 × 3 matrices, and covariance te
(22). In these graphical representations, green is positive, black is zero, and red is negative. A
covariance tensors ℂ. See the Diffusion modeling and estimation section for details on mode
imaging using only the linear b-tensors obtained with SDE encoding are equal in these three e
than a quantity that has already been averaged within a voxel, has the potential to provide a p
In this section we will first introduce the measurement tensor (the
b-tensor) (Westin et al., 2014b) and its connection to QTI. We will
then discuss distributions over diffusion tensors and define the DTD
model, its estimation using QTI, scalar invariants derived from DTD,
and how to estimate these invariants.

Defining the b-tensor

In diffusion imaging, the measurement probe takes an average over
the microenvironments within the tissue. By designing families of new
probes, we are looking for statistical properties of the distribution over
these microenvironments. We argue that by probing the collection of
microenvironments with all shapes and orientations of measurement
probes, we can recover information about the distribution over these
microenvironments. For example, all three distributions in Fig. 1
would appear isotropic in an SDE experiment, but can be distinguished
with access to higher ordermoments such as variability in shape or size.

In conventional DTI, the dependence of the diffusion coefficient on
the encoding direction n is modeled by a second-order tensor according
to D(n)=nT〈D〉n, where |n |=1. While DTI estimates a single second
order tensor, it can be thought of as 〈D〉, which is themean of a distribu-
tion of tensors. This relation can also be expressed as an inner product
between the diffusion tensor and a b-tensor B according to

bD nð Þ ¼ bnT Dh in ¼ bbn⊗2;DN ¼ bB;DN: ð1Þ

where b is the b-value. Thus, in SDE, the b-tensor is defined by the outer
product of the gradient direction, B=bn⊗2=bnnT. The conventional b-
value is given by b=hB; Ii where I is the second-order identity tensor.
g conventional SDE-based dMRI sequences such as DTI, HARDI, DSI, and DKI, but can be
f diffusion tensor distributions within a voxel that yield an isotropic average diffusion
al DTI. The second row shows the DTD model corresponding to each synthetic example.
nsors, shown as 6 × 6 matrices, along with the scalar invariants from Eqs. (14), (19) and
lthough the three examples have identical average diffusion tensors they have different
l estimation. The corresponding fourth-order tensors as observed by diffusional kurtosis
xamples. The ability to measure and model the distribution over diffusion tensors, rather
owerful new paradigm for the study of complex tissue architecture.
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We may also express this as b=Tr(B), i.e., the trace of B. In the DTI lit-
erature, B is called the “b-matrix.”

In the context of SDE-based acquisitions, the b-matrix ismainly used
to correct for cross-terms with imaging gradients (Basser and Jones,
2002). However, the b-matrix/tensor concept can be extended to ana-
lyze the diffusion encoding that results from waveforms other than
SDE. In the most general form, we analyze the effect of an arbitrary
timedependent gradientwaveform q(t) in terms of a trajectory through
q-space g(t) according to

q tð Þ ¼ γ
Z τ

0
g t0ð Þdt0; ð2Þ

where γ is the gyromagnetic ratio. The b-tensor can now be generally
defined as

B¼
Z τ

0
q tð Þ⊗2dt; ð3Þ

where τ is the echo time. To clarify, and as evidenced from Eq. (3), we
note that the b-tensor is a measurement tensor, and as such it depends
only on the gradient waveform and not on the underlying tissue
geometry.

We emphasize that the trajectory of q(t) determines the shape of the
b-tensor. To allow for an intuitive interpretation of the gradient trajec-
tory and its relation to q-space and corresponding b-tensor, we illus-
trate a selection of b-tensors from SDE and DDE (Fig. 2). The shape of
the b-tensor is quantified by its eigenvalues, and two b-tensors are of
identical shapes if they share eigenvalues. In SDE, the b-tensors are of
rank 1 (the rank of the b-tensor is given by the number of non-zero
eigenvalues) and are shaped like a stick or a line, giving “linear”
b-tensors. In DDE, when the two pulses are not parallel, the b-tensors
have rank 2, and are shaped like a disc or a plane, producing a “planar”
b-tensor. Gradient waveforms designed to yield isotropic diffusion
encoding, for example TDE (Topgaard, 2015) or magic angle spinning
Fig. 2. Examples of gradientwaveforms and trajectories that produce “linear” and “planar” b-ten
waveformcolumn, red–green–blue defines the x–y–z gradient directions; in the gradient traject
in the q-space trajectory column, trajectory speed, slow to fast, is encoded red–yellow–green–
green–blue. In the rank-1 case, this b-tensor color mapping corresponds to the principal eig
planar case, rather than relying on a randomly oriented major eigenvector for color informatio
gives yellow in the RGB sense).
of the q-vector (qMAS) (Eriksson et al., 2013), yield b-tensors of
rank 3, shaped like spheres (Fig. 3). The concept behind qMAS is to
spin q(t) in order to narrow the distribution of diffusion coefficients to
the mean diffusivity of each domain, similar to the narrowing of chem-
ical shift anisotropy obtained by mechanically spinning the sample in
the magic-angle in solid-state NMR (Andrew et al., 1959). As we will
show below, the rank of the b-tensor is important in the estimation of
the DTD.

In general, any q-space trajectory starting and ending at the origin
generates a b-tensor, and its shape will depend on the trajectory of
the curve. Affine transformations may be used to modify the trajectory
of the curve and the b-tensor (Westin et al., 2014b). To generate a
b-tensor with a specific shape, one can start with a q-space trajectory
q(t) that produces a b-tensor B (Eq. (3)). Since Eq. (2) is linear, scaling
q(t) with an affine transformM corresponds to scaling the gradient tra-
jectory gM(t)=Mg(t), and yields the new curve qM(t)=Mq(t). This re-
sults in a new b-tensor

BM ¼
Z τ

0
Mq tð Þð Þ⊗2dt ¼ M

Z τ

0
q⊗2
0 tð Þdt

� �
MT ¼ MBMT: ð4Þ

The special case of transforming a normalized isotropic q-space tra-
jectory with B= I produces the simple relation BM=MMT. Therefore,
we can generate a family of trajectories with corresponding b-tensors
by applying affine transforms to any existing gradient trajectory. More-
over, from a single trajectory that has a b-tensor of rank 3 (e.g., qMAS),
we can generate new trajectories that span all possible b-tensors, i.e.
any set of three eigenvalues, at any orientation. Examples of affinely
transformed trajectories and corresponding b-tensors can be found in
Fig. 4.

We note that even if the trajectory q(t) corresponds to a B that is ini-
tially a rank 3 tensor yet not isotropic, the following transformation

M¼B−1=2; ð5Þ
sor shapes, from the SDE and DDE experiments. Color coding is as follows: in the gradients
ory column, slewrate, slow to fast, is encoded by red–yellow–green–blue fromzero tomax;
blue; in the b-tensor column, the diagonal elements of the b-tensor are mapped to red–
envector direction, analogous to the standard color coding for diffusion tensors. In the
n, the effect is to sum the colors in the plane (as in the bottom row where red plus green



Fig. 3. TDE andQTE encoding schemes can be used to produce isotropic diffusion encoding, with a spherical b-tensor. Color coding is as follows: in column 1, red–green–blue defines the x–
y–z gradient directions; in columns 2 and 3, slewrate and trajectory speed are encoded by red–yellow–green–blue, where red is slow and blue is fast; in column 4 the diagonal elements of
the b-tensor are mapped to red–green–blue (and thus gray indicates these elements of the isotropic b-tensor are the same). The encoding scheme in the second row was generated by
transforming the TDE encoding from the top row: first, pulses were shifted closer together so the green positive pulse aligned with the negative red pulse etc., and then a transform
was applied to make the encoding isotropic, as in Eq. (5). In the bottom row, the isotropic diffusion encoding from qMAS produces a lasso-like q-space trajectory.
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will generate a new trajectory that yields a corresponding isotropic b-
tensor, and can also transform q(t) to a trajectory that produces isotro-
pic encoding. This is since BM=MBMT=B−1/2B(B−1/2)T=I..

According to central concepts in image processing, efficient detec-
tion of signal is achieved by adapting the detection unit to the character-
istics of the signal. Thus, we would like to sample the signal with a
variety of measuring b-tensors that span the entire family of shapes ex-
pected in the tissue microenvironments. For example, one natural op-
tion is a family of b-tensors that span the entire spectrum of shapes,
from sticks through plates to spheres. When a linear and planar b-
tensor are orthogonal, the linear tensor effectively encodes diffusion in
a direction perpendicular to its planar counterpart, and visually, the lin-
ear b-tensor points along the normal of the plane of the planar b-tensor.
Thus, there is a dual nature of a linear and planar b-tensor that share
symmetry axes. In an anisotropic structure, a linear b-tensor oriented
along the structure will yield higher signal attenuation, whereas the or-
thogonal planar tensor will yield lower signal attenuation.

An example of such encoding can be found in our recent work on
TDE (Eriksson et al., 2015) where we use stick–sphere–plate b-tensors
to measure stick–sphere–plane microscopic diffusion tensors. This pro-
posed family of trajectories (Fig. 4) was generated by applying affine
transforms to an initially isotropic (i.e., spherical) qMAS encoding
(Lasič et al., 2014; Szczepankiewicz et al., 2015) (Fig. 3, last row) as
the initial input trajectory.

Defining a distribution over diffusion tensors

Consider a system composed of a collection of microenvironments,
where in each individual microenvironment the diffusion is described
by a diffusion tensor D (as in Fig. 1). We propose to compactly model
these microenvironments within a voxel with a distribution over
tensors. The tensor D is then a stochastic variable with expectation
〈D〉, where 〈⋅〉 represents averaging over the distribution in the voxel.
The covariance of D is given by a fourth-order tensor ℂ (Basser
and Pajevic, 2007), that we define using the standard definition of
covariance

ℂ ¼ 〈D⊗2i � Dh i⊗2 ð6Þ

where D⊗2=D⊗D is the outer product of Dwith itself. For implemen-
tation, it is convenient to express the symmetric 3×3 tensor D in Voigt
notation as a column vector d of size 6×1, containing the six distinct
components of D, according to,

d ¼ dxx dyy dzz
ffiffiffi
2

p
dyz

ffiffiffi
2

p
dxz

ffiffiffi
2

p
dxy

� �T
: ð7Þ

The
ffiffiffi
2

p
factors are necessary for d and D to have equal norms. The

tensors 〈D⊗2〉 and 〈D〉⊗2 can now be defined by

〈D⊗2i ¼ 〈ddTi ¼ didj
� � ð8Þ

where i , j∈{xx,yy,zz,yz,xz,xy}, and

Dh i⊗2 ¼ dh i dh iT ¼ 〈dii dj
� �

: ð9Þ

Hence, these tensors can be represented by 6 × 6 matrices. For the
covariance ℂ, we reuse the same symbol for the 3 × 3 × 3 × 3
(Eq. (6)) and the 6 × 6 versions of ℂ, which can now be expressed as

cij ¼ didj
� �

−〈dii dj
� �

; ð10Þ



Fig. 4. QTE encoding: an example family of b-tensors, with shapes ranging from linear to spherical to planar. Gradient waveforms and trajectories are shown along with the resulting
q-space trajectories and b-tensors. The curves were produced by transforming the curve with efficient isotropic encoding (C) to yield linear encoding (A), prolate encoding (B), oblate
encoding (D), and planar encoding (E). We have used b-tensors from this family in our proof-of-concept clinical study, where multiple rotated versions of this family were applied.
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or in full by

ℂ ¼

cxx;xx cxx;yy cxx;zz
ffiffiffi
2

p
cxx;yz

ffiffiffi
2

p
cxx;xz

ffiffiffi
2

p
cxx;xy

cyy;xx cyy;yy cyy;zz
ffiffiffi
2

p
cyy;yz

ffiffiffi
2

p
cyy;xz

ffiffiffi
2

p
cyy;xy

czz;xx czz;yy czz;zz
ffiffiffi
2

p
czz;yz

ffiffiffi
2

p
czz;xz

ffiffiffi
2

p
czz;xyffiffiffi

2
p

cyz;xx
ffiffiffi
2

p
cyz;yy

ffiffiffi
2

p
cyz;zz 2 cyz;yz 2 cyz;xz 2 cyz;xyffiffiffi

2
p

cxz;xx
ffiffiffi
2

p
cxz;yy

ffiffiffi
2

p
cxz;zz 2 cxz;yz 2 cxz;xz 2 cxz;xyffiffiffi

2
p

cxy;xx
ffiffiffi
2

p
cxy;yy

ffiffiffi
2

p
cxy;zz 2 cxy;yz 2 cxy;xz 2 cxy;xy

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

ð11Þ

where 21 out of the 36 elements are unique since ℂ has both major
symmetry (cab ,cd=ccd ,ab) and minor symmetry (cab ,cd=cba ,cd). Note
that this symmetry is different than for fully symmetric fourth-order
tensors which have only 15 unique elements (cabcd with fully permut-
able indices).

Diffusion modeling and estimation

The QTI framework describes the diffusion-encoded MR signal from
a system composed ofmultiplemicroenvironments, each having Gauss-
ian diffusion modeled by a diffusion tensor D and measured using a b-
tensor B. The signal S (normalized by the non-diffusionweighted signal,
S0) can be expressed as

S Bð Þ ¼ 〈 exp −b B;D Nð Þi; ð12Þ

where 〈⋅〉 averages the MR signal across all environments in a voxel.
Assuming Gaussian diffusion in all microenvironments, it is sufficient
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to describe a QTI experiment by the b-tensor alone; other factors, such
as the diffusion time or the duration of diffusion encoding, do not
need to be explicitly accounted for. The abstraction of assuming Gauss-
ian diffusion is useful and reasonably accurate as long as 1NS(B)N0.1
(Topgaard and Söderman, 2003) and as long as any restricting geome-
tries are small compared to the length scale of diffusion that takes
place during the encoding waveform. This is also a central assumption,
for example, in the NODDI model that assumes the apparent axonal di-
ameter to be zero (Zhang et al., 2012).

Investigating the cumulant expansion of S reveals a key relationship,

S Bð Þ≈ exp −bB; 〈Dð iNþ 1
2
bB;ℂNÞ; ð13Þ

whereB ¼ B⊗2. This approximation enables us to relate 〈D〉 andℂ from
our model directly to the signal measurements. The derivation is pre-
sented in Appendix A, where we also show that expansion to the third
order yields a 6th-order tensor that is related to the skewness of the dis-
tribution of diffusion tensors. The approximation in Eq. (13) is valid up
to some b-value (trace of B) called the convergence radius, which
depends on the distribution of the diffusion tensors. For simple distribu-
tions and for SDE, the convergence radius has been calculated analyti-
cally (Kiselev and Il'yasov, 2007).

Scalar invariants derived from QTI

In this section, we introduce scalar invariants to describe properties
of the distribution of microenvironments. We define these invariants
using projections of 〈D〉 and ℂ, and ratios of these projections. Fig. 1 il-
lustrates the tensors 〈D〉 and ℂ graphically for three distinct distribu-
tions of microenvironments, and example invariants.

Invariants from the mean of the tensor distribution
First, we note that existing DTI invariants can be expressed as inner

products. For example, we can express the mean diffusivity (MD) as an
inner product of the diffusion tensor and the isotropic tensor Eiso ac-
cording to

MD Dh ið Þ ¼ b Dh i;EisoN ¼
dxx dxy dxz
dyx dyy dyz
dzx dzy dzz

0
@

1
A;

1
3

1 0 0
0 1 0
0 0 1

0
@

1
A* +

¼ 1
3

dxx þ dyy þ dzz
	 
 ð14Þ

where Eiso is defined by

Eiso ¼ 1
3
I ¼ 1

3

1 0 0
0 1 0
0 0 1

0
@

1
A; ð15Þ

which is a scaled second-order identity tensor with unity Frobenius
norm. In the next section we show that not only themean, but also var-
iances, can be expressed as inner products, and we use this to derive
other scalar invariants of the distribution D.

Invariants from the covariance of the tensor distribution
From the 4th order covariance tensor, several scalar invariants can

be derived. We start with discussing isotropic components of this
tensor. We first define the isotropic 4th order tensor

Eiso ¼ 1
3

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

ð16Þ
This isotropic fourth-order tensor can be divided into two distinct
isotropic components, which in the field of mechanics are interpreted
as bulk and shear modulus of the fourth-order stress tensor (Moakher,
2008). We define these tensors as

Ebulk ¼ E⊗2
iso ¼ 1

9

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA

ð17Þ

and

Eshear ¼ Eiso−Ebulk ¼ 1
9

2−1−1 0 0 0
−1 2−1 0 0 0
−1−1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

0
BBBBBB@

1
CCCCCCA
; ð18Þ

It is evident that the bulk and shear components are orthogonal,
bEbulk;Eshear N ¼ 0.

These isotropic tensors can be used to derive scalar measures of
variances from the fourth-order covariance tensor ℂ. For example, the
variance in mean diffusivities VMD between local microenvironments,
is the bulk part of the variance,

Vbulk ¼ bℂ;Ebulk N ¼ b 〈D⊗2〉;Ebulk N− b Dh i⊗2;Ebulk N ¼ VMD ð19Þ

using the definition of C from (Eq. (6)) and where

b〈D⊗2i;EbulkN ¼ 〈MD2i ð20Þ

b Dh i⊗2;EbulkN ¼ MDh i2 ð21Þ

Note that ifℂ has been estimated, 〈D⊗2〉 can be obtained fromℂ and
〈D〉 (Eq. (6)). The variance VMD can be interpreted as the bulk or size
variation of the diffusion tensors in the distribution and can in short
be expressed as VMD=〈MD2〉−〈MD〉2. Similarly, we obtain the shear
variance Vshear by

V shear ¼ bC;EshearN ¼ b〈D⊗2i;EshearN− b Dh i⊗2;EshearN ð22Þ

This equation can be seen in terms of tensor-shape from eigenvalue
variance. We can define the shape of a tensor Twith eigenvalues λ1, λ2,
and λ3, according to

Vλ Tð Þ ¼ 1
3
Σ3
i¼1λ

2
i −

1
3
Σ3
i¼1λi

� �2

: ð23Þ

With this definition the components of Vshear in Eq. (22) can be
described by

b〈D⊗2i;EshearN ¼ Vλ Dð Þh i ð24Þ

b Dh i⊗2;EshearN ¼ Vλ Dh ið Þ ð25Þ

and the shear variance can be expressed as Vshear=hVλðDÞi−Vλ(hDi).
Further, the total isotropic variance is the sum of VMD and Vshear

V iso ¼ bC;EisoN ¼ VMD þ V shear ð26Þ

The shear variance Vshear is sensitive to both variations in orientation
of the tensors, as well as the shape (microscopic anisotropy) of the ten-
sors, in the distribution. It would yield a high value for a system contain-
ing randomly ordered anisotropic compartments (Fig. 1, left), and a low
value for isotropic compartments (Fig. 1, middle). On the other hand,
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VMD reflects variation of mean diffusivities and would yield a low value
if all microscopic compartments are similar in this respect (Fig. 1, left),
but a high value if they are not (Fig. 1, middle).
Normalized scalar invariants derived from QTI

We propose to separate the bulk and shear variances into measures
that may be more intuitively meaningful, with the goal of separating
size, shape, and orientation coherence. The measures we propose
are normalized and range between 0 and 1. Normalizing the VMD gives
a natural size variation parameter, CMD. Normalizing the shear variance
ismore challenging because it is affected by both the shape of themicro-
environments and their orientation coherence (or dispersion). We de-
rive a measure of shape, Cμ, related to μFA and a separate measure of
microscopic orientation coherence, Cc, related to previously presented
order parameters. Fig. 5 summarizes the intuitive meaning of these
measures.
Normalized size variance
This variance measure describes the normalized size variance of the

tensors, where size is defined by the trace of the tensor, or equivalently
by its mean diffusivity. A normalized size variance measure can be de-
fined by normalizing VMD (Eq. (19)) to produce

CMD ¼ b ℂ;EbulkN

b〈D⊗2i; EbulkN
¼
X1

3
tr Dkð Þ2−tr 1

3

X
Dk

� �2
X1

3
tr Dkð Þ2

ð27Þ
Fig. 5. This visualization of four proposed measures demonstrates how the measures would
intuitively separate size, shape, and orientation coherence, as well as providing the traditional
where the subscript k indicates a sample from the distribution D, and
the summation is over all samples. CMD is 0 when all microenviron-
ments have the same size, and increases with increased size variance.

Micro- and macroscopic anisotropy
We can also define a microenvironment shape measure using nor-

malized variances. The obtained quantityCμ is related to themicroscopic
anisotropy μFA of the tensors in the distribution

Cμ ¼ 3
2
b 〈D⊗2i;Eshear N

b 〈D⊗2i;Eiso N
¼ 3

2

X
k

1
3

X3

i¼1
λ2
ki‐

1
3

X3

i¼1
λki

� �2
 !

1
3

X
k

X3

i¼1
λ2
ki

¼ μFA2

ð28Þ
and thus

μFA ¼
ffiffiffiffiffiffi
Cμ

q
ð29Þ

The factor 3
2 makes the range of the measure [0,1]. Note that the av-

eraging brackets 〈〉 in Eq. (28) are applied on the outer product of the

tensors for each microdomain hD⊗2i. By instead performing the averag-
ing on the microdomain tensors and then taking the outer product

hDi⊗2, we arrive at an expression for the macroscopic anisotropy that
corresponds to the familiar FA measure according to

CM ¼ 3
2
b Dh i⊗2;EshearN

b Dh i⊗2;EisoN
¼ 3

2

1
3
Σ3
i¼1λ

2
i −

1
3
Σ3
i¼1λi

� �2

1
3
Σ3
i¼1λ

2
i

¼ FA2: ð30Þ
change in eight illustrative synthetic macrodomains (voxels). Note that these measures
macroscopic anisotropy.
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These two anisotropy measures Cμ and CM become equal when all
the tensors have the same shape and orientation. If there is dispersion
of the orientations or variation in shape, then the two anisotropy mea-
sures are different. To illustrate the difference between these two
anisotropy measures, consider a case when all tensors in a voxel have
identical eigenvalues but are randomly oriented. In that case, CM
would be zero, but Cμ would assume the value that CM would have
had if all tensors were aligned. A corresponding analogy applies for FA
and μFA (Lasič et al., 2014), since they are simply the square roots of
CM and Cμ. Notice the similarity between Eqs. (28) and (30), where
the only difference is whether the averaging across tensors takes place
before or after the tensor outer product.

This way of calculating μFA is a direct method and does not involve
any powder averaging as required by previous methods (Lasič et al.,
2014; Jespersen et al., 2013). Powder averaging requires that the sam-
pling of the data is isotropically distributed on the sphere. For multiple
diffusion encoding schemes, there is no general method for distributing
the measurements isotropically. For double diffusion encoding, the few
schemes that have been presented (Jespersen et al., 2013;Westin et al.,
2013; Lawrenz and Finsterbusch, 2013) have very specific numbers of
measurements and cannot be varied when optimizing a clinical
protocol.

Microscopic orientation coherence
The orientation coherence of microenvironments can by quantified

by the orientational order parameter. The name “order parameter” is a
well-established parameter for describing the order in liquid crystals.
It is defined as OP=〈3cos2(θ)−1〉/2, where θ is the angle between
the domain and voxel scale symmetry axes. This original vector defini-
tion of the order parameter is based on the notion that the structures
have the same size, and thus can be described by angles. This definition
has recently been extended to (diffusion) tensors (Lasič et al., 2014;
Szczepankiewicz et al., 2015). Translated into our notation, these defini-
tions of OP are

OP2 ¼ b Dh i⊗2;EshearNb〈D⊗2i;EbulkN

b〈D⊗2i;EshearNb Dh i⊗2;EbulkN
ð31Þ

and

OP2 ¼ b Dh i⊗2;EshearN

b〈D⊗2i;EshearN
ð32Þ

OP provides a measure of orientation dispersion that has a simple
geometric interpretationwhereOP=0 indicates randomly oriented do-
main orientations and OP = 1 indicates perfectly coherent alignment.

We here define a new order parameter, Cc, the microscopic orienta-
tion coherence. Cc is related to prior definitions of OP, but it is designed
to remove the effect of size distributions

Cc ¼ b Dh i⊗2;EshearNb〈D⊗2i;EisoN

b〈D⊗2i;EshearNb Dh i⊗2;EisoN
¼ CM

Cμ
; ð33Þ

which we can recognize as the ratio of the micro- and macroscopic an-
isotropies. As an illustrative example, if all microenvironments are of
the same shape and aligned, Cμ and CM are equal, and thus Cc equals 1.
If the microenvironments are randomly oriented, CM becomes 0 and
thus Cc equals 0. For very small Cμ this orientation coherence measures
is not meaningful since the average orientation of the microenviron-
ments is uncertain.

Connections to DKI

The QTI framework connects naturally to DKI (Jensen et al., 2005),
which is also based on the cumulant expansion of the signal
(Eq. (13)). The difference is that the fourth order tensor used in DKI,
W, is totally symmetric and thus has only 15 unique elements, which
can be estimated from an SDE experiment. In contrast, ℂ has major
and minor symmetry with 21 unique elements, requiring acquisitions
with b-tensors of rank 2 or 3. By comparing the DKI model from ref.
(Jensen et al., 2005) with Eq. (13), we see that

b
1
3
MD2W;n⊗4N ¼ bℂ;n⊗4 N: ð34Þ

However, 13MD2 W≠ℂ, becauseWhas total symmetry whereasℂ has
not. This has consequences for themetrics that can be derived. It can be
shown that

2bW;EbulkN ¼ bW;EshearN: ð35Þ

This means that DKI entangles the bulk and shear contributions to
the tensor variance. Tomore explicitly see this, wewill derive the totally
symmetric isotropic tensor (15 unique elements), and express it by a
bulk and a shear component. Consider the mean kurtosis, here defined
as the average of W across the sphere as (Hansen et al., 2013)

MK ¼ 1
4π

Z
nj j¼1

bW;n⊗4 N dS ð36Þ

which in our notation is written as

MK ¼ bW;EtsymN ¼ 3
bℂ;EtsymN

b Dh i⊗2;EbulkN
ð37Þ

whereEtsym is an isotropic tensor that has total symmetry (15 indepen-
dent components), defined as

Etsym ¼ 1
4π

Z
nj j¼1

n⊗4dS ¼ 1
15

3 1 1 0 0 0
1 3 1 0 0 0
1 1 3 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

0
BBBBBB@

1
CCCCCCA

¼ Ebulk þ
2
5
Eshear

ð38Þ

From Eq. (38), and the fact that the bulk and shear components are
orthogonal, we can see that the ratio of the inner products with the
shear and bulk tensor

bEtsym;EshearN

bEtsym;EbulkN
¼ 2bEshear;EshearN

5bEbulk;EbulkN
¼ 2

5
45
81

81
9

¼ 2; ð39Þ

which is the factor 2 in Eq. (35).

Disentangling bulk and shear kurtosis by QTI
From Eq. (38) we see that Etsym is the sum of a bulk and shear part,

and thus DKI'smean kurtosis is also the sumof two kurtosis components

MK ¼ Kbulk þ Kshear: ð40Þ

With access to the full 4th order tensorℂ, QTI allows the estimations
of the two separate kurtosis contributions. We denote these two novel
measures the bulk kurtosis,

Kbulk ¼ 3
bℂ;EbulkN

b Dh i⊗2;EbulkN
; ð41Þ
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and the shear kurtosis,

Kshear ¼
6
5

bℂ;EshearN

b Dh i⊗2;EbulkN
: ð42Þ

From this analysis, we can expect MK to depend on the orientation
dispersion through the dependence of Kshear on Vshear (Eq. (22)), just
as FAdepends on orientation dispersion (Lasič et al., 2014). Thismay ex-
plain why there is a strong correlation between MK and FA (Lätt et al.,
2013). To obtain a kurtosis metric purely related to microscopic anisot-
ropy that is independent of orientation dispersion, we propose the mi-
croscopic kurtosis:

Kμ ¼ 6
5
b〈D⊗2i;EshearN

b Dh i⊗2;EbulkN
: ð43Þ

Estimation of the tensor covariance

To estimate the fourth-order covariance ℂ from a set of dMRI mea-
surements, we first denote B ¼ B⊗2 and ℂ in Voigt notation as column
vectors of size 21 × 1, represented by and , andwe denote B as a col-
umn vector of size 6 × 1, represented by b. We can now estimate the
non-diffusion encoded signal S0, the average diffusion tensor 〈d〉 and
the tensor covariance by solving the following equation system.

ð44Þ

S
⏟

¼ X
⏟

β
⏟

ð45Þ

m�1 m�p p�1

where β is the model parameter vector containing the esti-
mated non-diffusion encoded signal, the mean of the diffusion tensor
distribution (a diffusion tensor), and its variance (a 4th-order covari-
ance tensor), and where m is the number of measurements and p is
the number of parameters of the model (p=1+6+21=28). The β
vector can be estimated by pseudoinversion according to

β� ¼ ðXTX
⏟
p�p

Þ−1XTS: ð46Þ

To simplify the description, we omit in this section correction for
heteroscedasticity introduced by the logarithmic transformation of the
signal data, but we include the correction in the data analysis section
below.

For XTX to be invertible, it must have full rank, i.e., rank(XTX)=28.
Note that 28=1+6+21, so this number can intuitively be related to
the one parameter to specify the signal baseline, the 6 parameters
required to specify the 2nd order mean diffusion tensor, and the 21 pa-
rameters needed to specificity the 4th order covariance tensor.

Just as in DTI, which requires sampling in at least 6 “non-collinear”
directions, we need to sample with at least 21 unique linear combina-
tions of to estimate ℂ. To formally specify the requirements on
these measurements is beyond the scope of this work, but we here pro-
vide a rule of thumb similar to the useful albeit incomplete “non-collin-
ear” requirement in DTI (Özcan, 2005). First, note that with SDE
encoding, the b-tensor has rank-1 and can only have a stick shape. As
a consequence, the rank of XTX is limited to p=1+6+15=22. This

is since B ¼ b2n⊗4 ¼ b2nin jnknl is fully symmetric, with indices that
are fully exchangeable. It is known that fully symmetric 4th order ten-
sors have only 15 unique elements. For experiments performed with
b-tensors of rank 2 or 3, however, B ¼ B⊗2 ¼ bijbkl , in which case B
has major symmetry and thus up to 21 unique elements. Hence, the
rank of XTX can become 1+6+21=28, provided that the signal is
sampled using b-tensors with, for example, different shapes, sizes, and
orientations. Fig. 6 demonstrates that sampling with different shapes
(e.g. linear, planar and isotropic) and sizes (i.e. b-values) of the
b-tensor disentangles the three cases shown in Fig. 1, which are indis-
tinguishable with SDE only (green lines).
Method

Implementation

We acquired data for q-space trajectory imaging (QTI) on a clinical
MRI scanner (Philips Achieva 3 T) using a pulse sequence developed
in house adapted from (Lasič et al., 2014). Imaging parameters were:
TE = 160 ms, TR = 6000 ms, field of view = 288 × 288 × 60 mm3,
image resolution 3 × 3 × 3 mm3, partial Fourier factor of 0.8. Diffusion
encodingwas performed using q-space trajectory encodingwaveforms.
Identical waveforms were executed before and after the 180° pulse to
compensate for potential non-linear gradient terms. The gradientwave-
forms were designed using Eq. (4) (Fig. 4).

We implemented two acquisition schemes: a preliminary acquisi-
tion and a proof-of-principle scheme designed for clinical studies. The
preliminary acquisition had 11 linearly spaced b-values between 50
and 2000 s/mm2, using linear, prolate, spherical, oblate and planar b-
tensors, rotated into the six directions specified by the icosahedral di-
rection scheme (Fig. 7), yielding in total 330measurements. The clinical
acquisition protocol was composed of 216 measurements and utilized
five b-values. Measurement tensors of four shapes were employed,
i.e., sticks, prolates, spheres, and planes, each associated with a specific
gradient trajectory (Table 2). From 6 to 30 b-tensor “measurement di-
rections” were obtained by rotating the gradient waveforms using an
evenly distributed geometric sampling scheme (Fig. 7).
Subjects

Five patients with schizophrenia and five age-matched healthy con-
trols without neurological disorders were investigated using the clinical
protocol. The local institutional review board approved all study proto-
cols and written informed consent was obtained from all subjects. All
schizophrenia patients met the DSM-5 criteria for schizophrenia. Dis-
ease duration was between 5 and 12 years (median of 10 years). The
median Positive and Negative Syndrome Scale score at the time of MRI
was 55, with a range of 42–71.
Analysis

Data was motion-corrected with affine transforms optimizing the
mutual information between acquired data and reference volumes
extrapolated from low b-value volumes (Nilsson et al., 2015). Opti-
mization was performed using three degrees of freedom: rotation
around the z-axis and in-plane translations, i.e., along the x- and y-
directions.

The average diffusion tensor and the tensor covariancewere fitted to
the data using Eq. (44). Prior to fitting, data was smoothed using a
Gaussian filter with a standard deviation of 0.5 voxels. The fit was
corrected for heteroscedasticity using HS=HXβ as the regression
model instead of S=Xβ, where H is a diagonal matrix with the signal
amplitudes as diagonal elements (Jones and Cercignani, 2010). Scalar
maps derived from the QTI framework representing the mean and var-
iance of the DTD, i.e., MD, VMD, Vshear, and Viso, were calculated from
Eqs. (14), (19), (22), and (26). Normalized variance measures,
i.e., CMD, Cμ, CM and Cc were calculated by using Eqs. (27), (28), (30),
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Fig. 6. The signal plots show the MR signal versus b-value measured in four synthetic datasets using b-tensors of three different ranks, where ranks are identified with shapes such that
rank1 is “linear,” rank 2 is “planar,” and rank 3 is “spherical.” The four synthetic datasets represent four distinct scenarioswith different distributions ofmicroenvironments (spheres of one
size, spheres of many sizes, sticks of one size and multiple orientations, and ellipsoids of multiple sizes and orientations). Notice the similarities of the light green signal curves in the
second, third and fourth plots. This illustrates that when using traditional SDE (linear b-tensor), multiple different microenvironments can produce similar signal responses. In fact,
they may even be identical. This shows that using simple model-based estimation of the distribution using SDE data and a predefined model of specific shape, a distribution over size
and orientation of that shape that fits the data can always be found, but the parameters found will of course be meaningless if the predefined model does not reflect the underlying
tissue architecture.
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and (33). Kurtosis maps were calculated by using Eqs. (37), (41), (42),
and (43).

FAmapswere registered toMNI space using (Jenkinson et al., 2012).
ROIs for globalwhitematter (WM)were defined in template space from
the Harvard-Oxford atlas and projected to subject space to extract
values for analysis and group comparisons. Only voxels present in all
subjects were included in the WM mask. Significance was tested using
the t-test (two-tailed, assuming equal variances). We refrained from a
more detailed and regional analysis due to the limited statistical
power offered by the limited group sizes (Szczepankiewicz et al., 2013).

Results

We first present the preliminary data, followed by the clinical pilot
study. Preliminary data was acquired with five different shapes of the
diffusion encoding tensor. Despite the rather long echo time (TE =
160 ms) in the prototype implementation, the sequence yielded high
quality images even at the maximal diffusion encoding (Fig. 8A). More
efficient encoding can be obtained by incorporating a pause for the
180° pulse in the gradient waveform (Sjölund et al., 2015), in contrast
icosahedron truncateddodecahedron

6 10 30

Fig. 7. In the proposed sampling scheme, Platonic solids are used to ensure even sampling in all
each solid. Note the dual nature of the icosahedron and dodecahedron: the center of the each
Further, the center of each face of the truncated icosahedron corresponds to a corner in either
icosahedron nest, their vertices (right) give evenly spaced sampling directions. To employ thi
with the desired direction (Table 2).
to the present implementation where the same waveform was applied
before and after the 180° pulse. The dual nature of a linear and planar
diffusion encoding is evident in regions of the images with coherent fi-
bers, where structures that appear bright in images encoded with a
stick-shaped b-tensor appear dark in those encoded with the planar b-
tensor, and vice versa (Fig. 8A) (Westin et al., 2014a; Ozarslan et al.,
2014). In white matter, the signal for high b-values decreases as the
shape of the b-tensor goes from linear, through prolate to isotropic,
but increases again for oblate and planar tensors (see Fig. 8B, corpus
callosum and crossingWM). In cortical regions with high fiber orienta-
tion dispersion, the signal also varies with the shape of the b-tensor, but
to a lesser degree (Fig. 8B). The difference in signal frommeasurements
with differently shaped b-tensors depends on the underlying distribu-
tion of microscopic diffusion tensors (Fig. 6).

Fig. 9 demonstrates parameter maps from QTI, calculated from data
obtainedwith the clinical protocol. Fig. 9A shows themean and variance
of the diffusion tensors, i.e., the mean diffusivity (MD), the variance of
the mean diffusivity, and the shear variance (VMD and Vshear). These pa-
rameterswere obtained byfitting Eq. (13) to thedata and calculating in-
variant projections of the tensors hDi and ℂ using Eqs. (14), (19), and
 icosa nested samples

directions (Westin et al., 2012). The number of distinct sample directions are listed below
face of the icosahedron corresponds to the vertex of the dodecahedron, and vice versa.
the icosahedron or dodecahedron. When the icosahedron, dodecahedron, and truncated
s scheme, a gradient waveform is rotated so that the symmetry axis of its b-tensor aligns



Table 2
Overview of the clinical protocol, which includesmultiple rotated versions of the family of
q-space trajectories in Fig. 4. The rotations were defined in order to sample evenly in all
directions, using a nested icosahedral sampling scheme (Fig. 7). The table includes the
number of directions acquired for each b-tensor shape and b-value. The 6 directions were
obtained from the icosahedron sampling scheme, 10 from the dodecahedron, 16 from the
icosahedron and the dodecahedron, and 30 from the truncated icosahedron scheme
(Westin et al., 2012). This gives a scheme with in total 216 measurements.

b (s/mm2) Stick Prolate Sphere Oblate Plane

50 – – 6 – –
250 6 6 6 – 6
50 10 10 6 – 10

1000 16 16 6 – 16
2000 30 30 6 – 30
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(22). As expected, the map of MD is high in the ventricles and the
subarachnoid space where there is cerebrospinal fluid, and at its
lowest in the white matter. The map of the variance in MD, VMD, ex-
hibits high values in regions where we expect high variability in
mean diffusivities, for example, in voxels with both tissue and cere-
brospinal fluid. Regions with MD above 2.6 m2/ms were masked
out, since high b-value data were inseparable from the noise floor
in such regions. It is noteworthy that VMD is non-zero in most parts
of the brain. The map of variance in shape and orientation, Vshear,
shows low values in gray matter and high values in white matter,
with the exception of the corpus callosum where the fibers are
more well-aligned than in other structures. The last map of Viso

shows the total variance, which is the sum of size, shape, and orien-
tation variance.

Maps of normalized variance measures are presented in Fig. 9B.
The measures are the size variance parameters (CMD), the micro-
and macroscopic anisotropy parameters (Cμ=μFA2 and CM=FA2),
and the microscopic orientation coherence measure (Cc). The nor-
malized size variance is higher in gray than in white matter. The mi-
croscopic anisotropy Cμ is high and relatively uniform in white
matter, even in crossing fiber regions, whereas the macroscopic an-
isotropy is lower in regions of crossing fibers than in single fiber re-
gions. Finally, the orientation coherence Cc is high in larger
coherent tracts such as the corpus callosum, and lower in regions
of high orientation dispersion.

Fig. 9C compares DKI's MK with the kurtosis measures derived
from the QTI analysis, which separate the diffusional kurtosis into
two components (Eqs. (37), (41), and (42)). The conventional diffu-
sional kurtosis MK is generally low in the gray matter and high in the
white matter. The kurtosis related to dispersion in mean diffusivity,
Kbulk, is generally low in the white matter, but higher and uniform
in the gray matter. The kurtosis related to the difference between
local and global anisotropy, Kshear, is high in most of the white matter
except in regions of coherent fiber structures such as the corpus
callosum. The alternative definition of the anisotropy-related kurto-
sis in Eq. (43), Kμ, which relates only to anisotropy-induced variance
and not to the degree of orientation coherence, is high also in the cor-
pus callosum.

Maps of FA and μFA are presented in Fig. 10. The μFA was calculat-
ed from Eq. (28) and corresponds to the value the conventional FA
would assume if all fibers were parallel. The parameter is thus inde-
pendent of the fiber orientation dispersion and shows high values
across all WM. In contrast, the FA calculated from 〈D〉 using
Eq. (30) shows low values in regions of crossing fibers. In fact, the
FA map resembles the regularity parameter Cshear, calculated by
Eq. (32). Hence, FA primarily reflects the degree of order among fi-
bers in white matter and to a lesser degree the amount of microscop-
ic diffusional anisotropy. The features of the μFAmap agree well with
the in-vivo maps obtained with DDE and qMAS-based approaches in
previous studies (Szczepankiewicz et al., 2015; Lawrenz and
Finsterbusch, 2013).
Example clinical study of schizophrenia

To investigate the clinical feasibility of the proposed diffusion MRI
framework we performed a small pilot study comparing five healthy
controls to five patients with schizophrenia. Due to the small number
of subjects, the results from the study are preliminary, and a larger
study is planned to confirm the implications of the current findings.
Parameter maps were calculated for all subjects, and analyzed using
in-house software to obtain an average value across all white matter,
as defined from the Harvard-Oxford atlas in template space and
backprojected to subject space.

Table 3 shows a comparison of parameters between white matter of
controls and patientswith schizophrenia. Although the statistical power
was limited due to the small group sizes (n = 5), we note that signifi-
cant differences between the groups were found for eight of eleven pa-
rameters tested. Patients had significantly higher MD and VMD, whereas
no effect was found for Vshear and Viso. The normalized variances Cμ and
CM showed significance. The four normalized parameters are plotted in
Fig. 11, showing a separation between the groups especially for Cμ. Both
anisotropy measures μFA and FA were significantly lower in the pa-
tients. For kurtosis, the conventionalMK showed nodifference,whereas
all the more specific kurtosis metrics showed significant differences,
with higher Kbulk and lower Kshear and Kμ in the patients.

Previous studies suggest that two separate pathologies dominate
changes seen in schizophrenia by diffusion MRI (Pasternak et al.,
2012): cellular pathology (likely demyelination) and increased levels
of extracellular free water (attributed to atrophy or to neuroinflamma-
tion), see Fig. 12. We tested these hypotheses by comparing analysis of
simulated data with average WM data from our study. For demyelin-
ation, we simulated measurements on a group of parallel fibers with
varying radial diffusivity (RD) while keeping the axial diffusivity (AD)
fixed (AD =2.6 m2/ms, RD = 0.05 → 1.7 m2/ms), inspired by (Song
et al., 2002). For the freewater hypothesis,we simulatedmeasurements
on dispersed fibers with AD =2.0 m2/ms and RD = 0.2 m2/ms being
gradually replaced with isotropic water with MD = 2.9 m2/ms. The
values of these parameters are in agreementwith what can be expected
for white matter in general (Pierpaoli et al., 1996) and were slightly ad-
justed to improve agreement between simulated and observed values.
Note that this model is simplistic, but can nevertheless illustrate poten-
tial mechanisms of change that can be separated by the DTD model.

The data from averagewhitematter did not agree well with the pre-
dictions of the demyelination hypothesis (red lines), heremodeled by a
coherent increase in the radial diffusivity of fibers. For the freewater hy-
pothesis, however, here modeled by replacing fibers with an isotropic
diffusion component, the agreement was good (blue lines). These re-
sults suggest that most of the effect in the schizophrenia group is driven
by an increase in both MD and VMD resulting from increased levels of
free water. The increase in these parameters may also be responsible
for the reductions of the apparent anisotropies FA and μFA, through an
increase in the denominators of Eqs. (30) and (28).

Discussion

In this work, we have introduced QTI and expanded the diffusion
signal by the cumulant to the fourth order to enable identification of
the fourth-order covariance term in the tensor distribution (Basser
and Pajevic, 2007). Thus, the tensor ℂ has a simple interpretation as
the covariance of “local” diffusion tensors.

Other studies have also explored the use of fourth-order tensors. DKI
is directly related to the cumulant expansion of the diffusion-encoded
signal (Jensen et al., 2005). QTI and DKI both provide quantitative mea-
sures, but QTI ismore specific since DKI entangles the two isotropic com-
ponents of the fourth-order tensor (Fig. 1, Eqs. (40)-(43)).Wewould like
to stress that the different types of diffusion tensor covariances cannot be
estimated using only rank-1 b-tensors. The fourth order covariance ma-
trix carries unique information in its two isotropic components, of which



Fig. 8. In vivo data from the preliminary data set. A.MR images diffusion encodedwith b=2000 s/mm2 and b-tensors offive shapes, i.e., linear, prolate, isotropic, oblate, and planar. Data is
displayed from two different b-tensor rotations (directions) sampled from the icosahedron (icosa 1 and icosa 2, top and bottom rows). Note that the linear and the planar measurements
are dual, and thus, where the linear measurement is bright the planar is dark; see yellow circles. This can be compared to the Funk-Radon transform that is performed in q-ball imaging,
where the diffusion signal is the result of integration on a great circle (Tuch, 2004). The planarmeasurement inherently does this integration. B. Signal-versus-b curves averaged across all
directions for corpus callosum (red), crossingwhite matter (green) and graymatter (blue). Curves are encoded with increasing color brightness from linear (dark, I), through prolate (II),
isotropic (III), oblate (IV) to planar encoding (full color, V). As expected, the linear encoding attenuates the signal the least, while the isotropic encoding attenuates it the most, and the
attenuations from the other encodings are in between. This in vivo data can be compared to the synthetic curves from Fig. 6, motivating the need for a model, such as the DTD, that
can decipher this data.
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one relates to microscopic anisotropy. In the context of DDE, fourth-
order tensormodels have been used extensively. For example, Lawrence
et al. derived such amodel based on a Taylor expansion of the MR signal
(Lawrenz et al., 2010), while Jespersen et al. investigated the cumulant
expansion (Jespersen et al., 2013). Jensen et al. developed a dPFG version
of DKI, that involved a fourth-order tensor with 66 unique elements
(Jensen et al., 2014). Distinct advantages of the framework we propose
are 1) that it is applicable to arbitrary gradient encoding schemes,
2) the complex diffusion measurements have an intuitive geometric
meaning, and 3) the analysis produces an output that has a simple
interpretation: mean and covariance of a tensor distribution.

By generalizing the concept of diffusion encoding in our analysis,
we do not need to be limited by traditional PFG-type encoding. To
analyze diffusion encoding performed with arbitrary gradient wave-
forms, we express the diffusion encoding in terms of a general mea-
surement b-tensor. Although the b-matrix concept is well
established and can be found in standard text books on diffusion
NMR and MRI (Karlicek and Lowe, 1980; Mattiello et al., 1997;
Callaghan, 2011; Price, 2009), the characterization of the b-matrix
using DDE and more general gradient waveform diffusion MRI is a
novel concept. In current literature, the concept of the b-matrix nor-
mally refers to the standard rank-one measurement (in our termi-
nology) with added imaging gradient and other correction terms.
Extending the traditional rank-1 diffusion measurement, to both
rank-2 and full rank-3 measurements, allows measurement of infor-
mation that is not attainable with SDE measurements.

In the present imaging protocol, the imaging voxels were also rela-
tively large (3 × 3 × 3 mm3) due to the long echo time (TE = 160 ms)
necessitated by the present prototype-like implementation on the MRI
scanner.We are confident that considerably improved implementations
are possible, and that the protocol settings can be optimized using
established methods (Alexander, 2008). A minimal requirement for a
protocol, however, is that data is acquired with measurement tensors
of varying shapes, which is not possible with SDE only. By optimizing
parameter settings, we believe that standard DTI resolutions will be ob-
tainable in clinically relevant imaging times.

Numerous DTI studies have shown that FA is a sensitive parameter,
but that it lacks specificity. For example, crossing fibers result in lower
FA and will be seen as a variation of FA in white matter (Alexander
et al., 2001; Szczepankiewicz et al., 2015). By contrast, Cμ (or μFA)
displays little variation within the white matter, which is an important
feature of Cμ since any disease-related reduction of the microscopic an-
isotropywill stand out clearly and be specific in terms ofmicrostructure.
Since white matter exhibits some degree of orientation dispersion
(Ronen et al., 2013; Nilsson et al., 2012; Zhang et al., 2012), we recom-
mend the use of Cμ (or μFA) for analysis of white matter microstructure
rather than the conventional FA, which entangles orientation dispersion
andmicroscopic anisotropy into a single metric. Many studies have also



Fig. 9. Examples of parametermaps obtained in QTI, calculated from data acquiredwith the clinical protocol.A. Top row shows themean diffusivityMD (Eq. (14)), the bulk VMD and shear
variances Vshear (Eqs. (19), (22)), and their sum Viso. B. The middle row shows examples of normalized variance measures. C. Lower row shows different kurtosis measures derived from
QTI: Total mean kurtosis (MK, Eq. (37)) separated into two components, bulk and mean kurtosis represented by Kbulk and Kshear (Eqs. (41) and (42)). The anisotropy-related kurtosis Kμ

(Eq. (43)) is shown in the rightmost panel.

Fig. 10. The anisotropy measure FA and the microscopic anisotropy μFA, which is known
from previous DDE and qMAS studies (Szczepankiewicz et al., 2015; Lawrenz and
Finsterbusch, 2013), are straightforwardly calculated from CM and Cμ.

358 C.-F. Westin et al. / NeuroImage 135 (2016) 345–362
shown thatMD is very sensitive to changes in cell density, useful for ex-
ample in tumor diagnosis (Padhani et al., 2009). Due to the random or-
dering of tumor cells, FA is of little use for understanding tumor
microstructure, whereas μFA can enable non-invasive quantification of
average cell shape (Özarslan, 2009; Szczepankiewicz et al., 2015).

The application of QTI in schizophrenia patients generated a number
of noteworthy observations. As expected (Pasternak et al., 2012), the
chronic schizophrenia patients showed elevated MD in the white mat-
ter. Interestingly, this increase was matched by an increase in VMD.
This increase cannot be explained by a homogeneous increase in the
local mean diffusivity, but can be explained by an increasing fraction
of free water. This suggests that increased extracellular water, e.g., due
to ch\ronic neuroinflammatory processes or atrophy, is the primary
mechanism explaining white matter diffusion changes in our cohort of



Table 3
Comparison of QTI parameters between controls (CTR) and schizophrenia patients (SZ),
reported as the group mean (standard deviation). Parameters were averaged across all
white matter before the comparison. Significance was tested using the Wilcoxon rank-
sum U-test.

Parameter CTR (n = 5) SZ (n = 5) Significance

MD 0.99 (0.01) 1.05 (0.04) pb0.05
VMD 0.13 (0.01) 0.17 (0.02) pb0.05
Vshear 0.45 (0.03) 0.43 (0.02) n.s.
Viso 0.59 (0.04) 0.61 (0.02) n.s.
CMD 0.10 (0.01) 0.11 (0.01) n.s.
Cμ 0.55 (0.02) 0.47 (0.04) pb0.01
CM 0.16 (0.01) 0.13 (0.01) pb0.01
Cc 0.26 (0.02) 0.24 (0.02) n.s.
μFA 0.74 (0.01) 0.69 (0.03) pb0.05
FA 0.37 (0.01) 0.33 (0.02) pb0.01
MK 0.93 (0.05) 0.90 (0.03) n.s.
Kbulk 0.31 (0.01) 0.36 (0.04) pb0.05
Kshear 0.62 (0.04) 0.53 (0.06) pb0.05
Kμ 0.79 (0.05) 0.67 (0.07) pb0.01
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patients with chronic schizophrenia (Pasternak et al., 2014). However,
we also observed reduced Cμ but unchanged Cc in the schizophrenia pa-
tients, which could indicate axonal degradation at a microscopic level.
Further studies with larger sample sizes are needed to confirm these
findings. We note that the current results, obtained by averaging
throughout the entire white matter, do not lend themselves to the pre-
cise interpretation of the newly proposedmeasures in comparison with
more traditional SDE measures. It will be interesting and more mean-
ingful to study localized changes in both the white matter and the
graymatter, and then to assess these resultswith analogy to simple pro-
totype distributions, such as those in Fig. 5.

The results from our pilot study are preliminary because of the low
number of subjects (5 + 5). By comparing measures from the subjects
with those obtained from simulations of two different pathologies,
wewere able to show that diffusion changes occurring in schizophrenia
are best explained by an increasing fraction of free water (Fig. 12). This
suggests that increased levels of extracellular water, e.g. due to chronic
neuroinflammatory processes or atrophy, are the primary mechanism
explaining white matter diffusion changes in our cohort of patients
with chronic schizophrenia. However, further studies with larger sam-
ple sizes are needed to validate this finding. Larger sample sizes would
also be required to separate global and local effects, especially consider-
ing that it is not known whether global effects precede local alterations
(Pasternak et al., 2012).

The proposed framework has some noteworthy limitations. First, the
present analysis assumes Gaussian diffusion in each microenvironment.
We believe that this is a relevant starting point for analysis of diffusion
MRI data from white matter obtained with clinical MRI scanners, since
with limited hardware, the time during which the diffusion is encoded
is far longer than the characteristic time scalewhere the diffusion process
turns from being free to restricted (Nilsson et al., 2013c). For example,
most axons in the corpus callosum are below 2–3 μm (Aboitiz et al.,
1992). Assuming an intrinsic intra-axonal diffusivity of 2 μm2/ms, the
0
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Fig. 11. Comparison of normalized measures in schizophrenia patients (SZ) and healthy contro
reduced in the schizophrenia group. Changes in Cc was not found to be significant between th
characteristic time scale is 2–4 ms. Here, we performed diffusion
encoding during approximately 100 ms, and thus the radial diffusion
coefficient of whitematter was likely nearly zero. This means that the as-
sumption of Gaussian diffusion in each local domain is reasonable. This is
also the starting point for model-based methods such as NODDI (Zhang
et al., 2012). Under the assumption of Gaussian diffusion in eachmicroen-
vironment, any q-space trajectory that produces a specific Bwill be equal.
If wewant to include restricted diffusion effects in themodel, our current
second-ordermodel of the q-space trajectorywould need to be extended.

Other aspects that may be important to consider are water exchange
and coherentflow. At least in healthywhitematter,water exchange likely
takes place on time scales much longer than the duration of the diffusion
encoding (Nilsson et al., 2013c). Coherent flow would result in a depen-
dence of theMR signal on the amount bywhich the encoding isflowcom-
pensated (Turner et al., 1990; Wetscherek et al., 2014). Extending the
signal model to account for restricted diffusion, water exchange and co-
herentflowwas, however, beyond the scopeof thepresentwork. Another
limitation is the approximation in Eq. (12), which is only valid for b-
values up to the convergence radius (Kiselev and Il'yasov, 2007). Esti-
mates of Cμ will suffer from systematic errors if the maximum b-value is
too large. However, this is a limitation that is also shared with other
models based on the cumulant expansion, such as DTI and DKI, and the
specific impact on QTI parameters will be addressed in future research.
Another potential source of bias is low SNR for high b-value acquisitions
and the rectified noise floor that results from it (Lätt et al., 2007). This
problem is also present for SDE and can be met by adjusting the voxel
size. For QTI, optimized gradient waveforms can also contribute to sub-
stantially improved SNR by reduced TE (Sjölund et al., 2015).

Conclusions

We have described a new diffusion MR framework for imaging and
modeling of microstructure that we call q-space trajectory imaging.
Our work shows that performing diffusion encoding with a wide range
of q-space trajectories is feasible on a clinical system. The work further
generalizes the concept of b-values, enabling new types of measure-
ments not available with conventional SDE-based diffusion MRI. We
showed that the cumulant expansion of the MR signal yields the mean
diffusion tensor and a fourth-order covariance tensor.While the diffusion
tensor is represented by a single isotropic parameter (MD), the covari-
ance tensor is characterized by two principal isotropic parameters,
i.e., VMD and Vshear, that representwithin-voxel variance of diffusion coef-
ficients. Togetherwith the diffusion tensor, these parameters can be used
to disentangle the diffusional kurtosis intomore specific representations,
or to calculate parameters such as CMD, Cμ and Cc. These parameters are
more specific than what is possible to obtain with conventional DTI
andDKI. By disentangling variation in size fromvariation in shape anddi-
rection, our framework may be useful for studying changes beyond the
macroscopic anisotropy as is done with conventional DTI. Alterations in
macroscopically isotropic regions,where there is high orientation disper-
sion or low microscopic anisotropy but variance in size, could be cap-
tured by our new normalized variance measures. Since the framework
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Fig. 12. Comparison ofmeasured data to simulations of two hypothesized pathologies in schizophrenia. Scatter plots showVshear versus FA (left) and VMD versusMD. Data points represent
an average across the cerebral white matter. The two parameters VMD and Vshear are related to variances of the distribution, corresponding to changes in size, and changes in orientation/
shape respectively. FA and Vshear were weakly correlated. MD and VMD were strongly correlated. Solid lines show results from analysis of data simulated to represent a demyelination
hypothesis, i.e. increasing radial diffusivity (red), and a free-water hypothesis, i.e. replacing WM with isotropic freely diffusing water (blue). Example voxels representing these
hypotheses is shown to the right.
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does not requiremacroscopic anisotropy, our framework could be useful
not only in white matter but also in gray matter.
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Appendix A

A.1. Vector and matrix notation of higher order tensors

We represented tensors by vectors and matrices in order to simplify
implementation in software. A symmetric second-order tensor can be
represented by a 6 × 1 column vector according to

d ¼ Dxx Dyy Dzz

ffiffiffi
2

p
Dyz

ffiffiffi
2

p
Dxz

ffiffiffi
2

p
Dxy:

� �T
ð47Þ

and symmetric fourth-order tensor can be represented by a 6 × 6

matrix, for example B ¼ B⊗2 ¼ bbT , or by a 21 × 1 column vector
according to.

A.2. Inner and outer products

Inner and outer products are simple to implement in software when
the tensors are represented by column vectors and matrices. The outer
product is then given by

D⊗2 ¼ ddT ð49Þ
(48)
and the inner product by

bD;N N ¼ dTn ð50Þ

and for fourth-order tensors by.

ð51Þ

The inner product of two matrices is also defined according to

bD;N N ¼ Tr DNT
� �

ð52Þ

Wemay encounter a case that utilize all of these notations, for exam-
ple, the evaluation of the square of the apparent diffusion coefficient in
the direction n,

ð53Þ

where the following identities follows from the notation

ℕ ¼ nnT ¼ N⊗2 ¼ n⊗4 ð54Þ

The above analysis also demonstrates the relation

b a;b N2 ¼ b a⊗2;b⊗2
N; ð55Þ

which becomes important in the analysis of the isotropic bases of the
4th order tensor.

A.3. Isotropic 4th order tensors

First, consider the projection ofℂ ontoEbulk, using only the rules de-
fined above,

bℂ;EbulkN ¼ b〈D⊗2i− Dh i⊗2;E⊗2
isoN ¼

¼ b〈D⊗2i;E⊗2
isoN−b Dh i⊗2;E⊗2

isoN ¼
¼ 〈bD⊗2;E⊗2

isoNi− b Dh i;Eiso N
2 ¼

¼ bD;Eiso N
2� �
− bD;EisoNh i2 ¼

¼ 〈MD2i− MDh i2 ¼ VMD

ð56Þ
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Second, considering the projection D⊗2 on Eshear,

bD⊗2;EshearN ¼ bD⊗2;
1
3
I−E⊗2

isoN

¼ bD⊗2;
1
3
IN−bD⊗2;E⊗2

isoN ¼
¼ bD2;EisoN− bD;Eiso N

2 ¼
¼ 1

3
Σ3
i¼1λ

2
i −

1
3
Σ3
i¼1λi

� �2

¼ Vλ Dð Þ

ð57Þ

where we utilized

bD2;EisoN ¼ 1
3
Tr DDð Þ ¼ 1

3
bD;DN ¼ bD⊗2;

1
3
IN ð58Þ

Now we consider projection of ℂ onto Eshear,

bℂ;EshearN ¼ b〈D⊗2i;EshearN−b Dh i⊗2;EshearN ¼
¼ 〈bD⊗2;EshearNi−b Dh i⊗2;EshearN ¼
¼ Vλ Dð Þh i−Vλ Dh ið Þ

ð59Þ

A.4. Cumulant expansion up to six-order tensor

The approximation in Eq. (13) is a cumulant expansion where we
expand s(b)= logS(b) around b=0 according to

s bð Þ ¼ log exp −bbN;DNð Þh i≈ s 0ð Þ þ bs0 0ð Þ þ 1
2
b2s″ 0ð Þ ð60Þ

where

s0 bð Þ ¼ S0 bð Þ
S bð Þ ð61Þ

s″ bð Þ ¼ S″ bð Þ
S bð Þ −

S0 bð Þ
S bð Þ

� �2

ð62Þ

For b=0, these functions evaluate to

S 0ð Þ ¼ 1 ð63Þ

S0 0ð Þ ¼ − bN;DNh i ¼ −bN; Dh iN ð64Þ

S″ 0ð Þ ¼ bN;DNh i2 ¼ bN;DNh i ¼ bN; Dh iN ð65Þ

where D ¼ D⊗2. Hence s″(0)=b ℕ,〈D⊗2〉−〈D〉⊗2 N=b ℕ,ℂ N.
Third order term (six-order tensor): For completeness, we note that

s bð Þ≈ s 0ð Þ þ b s0 0ð Þ þ 1
2
b2s″ 0ð Þ−1

6
b3s 3ð Þ 0ð Þ ð66Þ

where

s 3ð Þ bð Þ ¼ S 3ð Þ bð Þ
S bð Þ −3

S0 bð ÞS″ bð Þ
S2 bð Þ

þ 2
S0 bð Þ
S bð Þ

� �3

ð67Þ

and

S 3ð Þ 0ð Þ ¼ 〈bN;DN3 〉 ¼ bN⊗3; 〈D⊗3 〉N ð68Þ

so that

S 3ð Þ 0ð Þ ¼ bN⊗3; 〈D⊗3 〉−3 〈D〉⊗〈D⊗2 〉 þ 2〈D〉⊗3
N ð69Þ

where we can define

M ¼ 〈D⊗3 〉−3 Dh i⊗〈D⊗2 〉 þ 2 Dh i⊗3 ð70Þ
and identifyM as the third central moment. This is a rank 6 tensor with
729 elements, of which 56 are unique.

A.5. Taylor expansion

For completeness, we also consider the Taylor expansion of E(b),
which is given by

S bð Þ≈ 1−bS0 0ð Þ þ b2

2
S″ 0ð Þ ¼ 1−bB; Dh iNþ 1

2
bB; Dh iN ð71Þ

The difference is that in the Taylor expansion, which is valid
for lower b-values than the Cumulant expansion, the fourth-order
term is given by hDi, whereas it for the cumulant expansion is given

by ℂ ¼ hDi−hDi⊗2.

A.6. Comparison with DKI

For the sake of completeness, we note that the DKImodel is given by
(Jensen et al., 2005)

log E b;nð Þ ¼ −bb Dh i;n⊗2Nþ b2

6
b Dh i;EisoN

2b W;n⊗4 N: ð72Þ

where b 〈D〉,Eiso N=MD. Hence

1
3
MD2bW;n⊗4N ¼ bℂ;n⊗4N ð73Þ

Because Eq. (73) involves projection onto outer products of vectors,
the following still holds

1
3
MD2 W≠ℂ ð74Þ

References

Aboitiz, F., Scheibel, A.B., Fisher, R.S., Zaidel, E., 1992. Fiber composition of the human cor-
pus callosum. Brain Res. 598 (1–2), 143–153.

Alexander, D.C., 2008. A general framework for experiment design in diffusionMRI and its
application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60
(2), 439–448.

Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L., 2001. Analysis of partial
volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45 (5), 770–780.

Andrew, E.R., Bradbury, A., Eades, R.G., 1959. Removal of dipolar broadening of nuclear
magnetic resonance spectra of solids by specimen rotation. Nature 183, 1802–1803.

Assaf, Y., Pasternak, O., 2008. Diffusion tensor imaging (DTI)-basedwhite matter mapping
in brain research: a review. J. Mol. Neurosci. 34 (1), 51–61.

Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J., 2008. AxCaliber: a method for mea-
suring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59 (6),
1347–1354.

Basser, P.J., Jones, D.K., 2002. Diffusion-tensor MRI: theory, experimental design and data
analysis - a technical review. NMR Biomed. 15 (7–8), 456–467.

Basser, P.J., Pajevic, S., 2007. Spectral decomposition of a 4th-order covariance tensor:
Applications to diffusion tensor MRI. Signal Process. 87 (2), 220–236.

Basser, P.J., Pierpaoli, C., 1996. Microstructural and physiological features of tissues eluci-
dated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111 (3), 209–219.

Bihan, D.L., Johansen-Berg, H., 2012. Diffusion MRI at 25: Exploring Brain Tissue Structure
and Function.

Callaghan, P.T., 2011. Translational Dynamics and Magnetic Resonance: Principles of
Pulsed Gradient Spin Echo NMR. Oxford University Press.

Callaghan, P., Komlosh, M., 2002. Locally anisotropic motion in amacroscopically isotropic
system: displacement correlations measured using double pulsed gradient spin-echo
NMR. Magn. Reson. Chem. 40 (13), S15–S19.

Cory, D.G., Garriway, A.N., Miller, J.B., 1990. Applications of spin transport as a probe of
local geometry. Polym. Prepr. 31, 149–150.

Does, M.D., Parsons, E.C., Gore, J.C., 2003. Oscillating gradient measurements of water dif-
fusion in normal and globally ischemic rat brain. Magn. Reson. Med. 49 (2), 206–215.

Drobnjak, I., Alexander, D.C., 2011. Optimising time-varying gradient orientation for mi-
crostructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 212 (2), 344–354.

Eriksson, S., Lasič, S., Topgaard, D., 2013. Isotropic diffusion weighting in PGSE NMR by
magic-angle spinning of the q-vector. J. Magn. Reson. 226, 13–18.

Eriksson, S., Lasič, S., Nilsson, M., Westin, C.F., Topgaard, D., 2015. NMR diffusion-encoding
with axial symmetry and variable anisotropy: distinguishing between prolate and

http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0005
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0005
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0010
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0010
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0010
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0015
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0015
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0020
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0020
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0025
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0025
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0030
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0030
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0030
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0035
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0035
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0040
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0040
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0045
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0045
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0050
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0050
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0055
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0055
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0060
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0060
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0060
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0065
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0065
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0070
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0070
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0075
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0075
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0080
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0080
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0085
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0085


362 C.-F. Westin et al. / NeuroImage 135 (2016) 345–362
oblate microscopic diffusion tensors with unknown orientation distribution. J. Chem.
Phys. 142 (10), 104201.

Ernst, R.R., Bodenhausen, G., Wokaun, A., et al., 1987. Principles of Nuclear Magnetic
Resonance in One and Two Dimensions. vol. 14. Clarendon Press, Oxford.

Hansen, B., Lund, T.E., Sangill, R., Jespersen, S.N., 2013. Experimentally and computation-
ally fast method for estimation of a mean kurtosis. Magn. Reson. Med. 69 (6),
1754–1760.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. FSL.
NeuroImage 62 (2), 782–790.

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional kurtosis
imaging: the quantification of non-gaussian water diffusion by means of magnetic
resonance imaging. Magn. Reson. Med. 53 (6), 1432–1440.

Jensen, J.H., Hui, E.S., Helpern, J.A., 2014. Double-pulsed diffusional kurtosis imaging. NMR
Biomed.

Jespersen, S.N., Lundell, H., Sønderby, C.K., Dyrby, T.B., 2013. Orientationally invariant
metrics of apparent compartment eccentricity from double pulsed field gradient
diffusion experiments. NMR Biomed. 26 (12), 1647–1662.

Jian, B., Vemuri, B.C., 2007. Multi-fiber reconstruction from diffusion MRI using mixture of
Wisharts and sparse deconvolution. Information Processing in Medical Imaging.
Springer, pp. 384–395.

Jones, D.K., Cercignani, M., 2010. Twenty-five pitfalls in the analysis of diffusion MRI data.
NMR Biomed. 23 (7), 803–820.

Jones, D.K., Knosche, T.R., Turner, R., 2013. White Matter Integrity, Fiber Count, and Other
Fallacies: The Do's and Don'ts of Diffusion MRI.

Karlicek, R., Lowe, I., 1980. A modified pulsed gradient technique for measuring diffusion
in the presence of large background gradients. J. Magn. Reson. 37 (1), 75–91.

Kiselev, V.G., Il'yasov, K.A., 2007. Is the “biexponential diffusion” biexponential? Magn.
Reson. Med. 57 (3), 464–469.

Lasič, S., Nilsson, M., Lätt, J., Ståhlberg, F., Topgaard, D., 2011. Apparent exchange rate
mapping with diffusion MRI. Magn. Reson. Med. 66 (2), 356–365.

Lasič, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D., 2014. Microanisotropy
imaging: quantification of microscopic diffusion anisotropy and orientational order
parameter by diffusion MRI with magic-angle spinning of the q-vector. Front. Phys.
2 (11).

Lätt, J., Nilsson, M., Malmborg, C., Rosquist, H., Wirestam, R., Ståhlberg, F., Topgaard, D.,
Brockstedt, S., 2007. Accuracy of q-space related parameters in MRI: simulations
and phantom measurements. IEEE Trans. Med. Imaging 26 (11), 1437–1447.

Lätt, J., Nilsson, M., Wirestam, R., Ståhlberg, F., Karlsson, N., Johansson, M., Sundgren, P.C.,
van Westen, D., 2013. Regional values of diffusional kurtosis estimates in the healthy
brain. J. Magn. Reson. Imaging 37 (3), 610–618.

Lawrenz, M., Finsterbusch, J., 2013. Double-wave-vector diffusion-weighted imaging re-
veals microscopic diffusion anisotropy in the living human brain. Magn. Reson.
Med. 69 (4), 1072–1082.

Lawrenz, M., Koch, M.A., Finsterbusch, J., 2010. A tensor model and measures of micro-
scopic anisotropy for double-wave-vector diffusion-weighting experiments with
long mixing times. J. Magn. Reson. 202 (1), 43–56.

Liu, C., Bammer, R., Acar, B., Moseley, M.E., 2004. Characterizing non-Gaussian diffusion by
using generalized diffusion tensors. Magn. Reson. Med. 51 (5), 924–937.

Lundell, H., Sønderby, C.K., Dyrby, T.B., 2015. Diffusion weighted imaging with circularly
polarized oscillating gradients. Magn. Reson. Med. 73 (3), 1171–1176.

Mattiello, J., Basser, P.J., Le Bihan, D., 1997. The b matrix in diffusion tensor echo-planar
imaging. Magn. Reson. Med. 37 (2), 292–300.

Mitra, P.P., 1995. Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-
echo diffusion measurement. Phys. Rev. B 51 (21), 15074.

Moakher, M., 2008. Fourth-order cartesian tensors: old and new facts, notions and appli-
cations. Q. J. Mech. Appl. Math. 61 (2), 181–203.

Nilsson, M., Lätt, J., Ståhlberg, F., vanWesten, D., Hagslätt, H., 2012. The importance of ax-
onal undulation in diffusion MR measurements: a monte carlo simulation study.
NMR Biomed. 25 (5), 795–805.

Nilsson, M., Lätt, J., van Westen, D., Brockstedt, S., Lasič, S., Ståhlberg, F., Topgaard, D.,
2013a. Noninvasive mapping of water diffusional exchange in the human brain
using filter-exchange imaging. Magn. Reson. Med. 69 (6), 1572–1580.

Nilsson, M., van Westen, D., Ståhlberg, F., Sundgren, P.C., Lätt, J., 2013b. The role of tissue
microstructure and water exchange in biophysical modelling of diffusion in white
matter. Magn. Reson. Mater. Phys. 26 (4), 345–370.

Nilsson, M., Lätt, J., van Westen, D., Brockstedt, S., Lasič, S., Ståhlberg, F., Topgaard, D.,
2013c. Noninvasive mapping of water diffusional exchange in the human brain
using filter-exchange imaging. Magn. Reson. Med. 69 (6), 1573–1581.

Nilsson, M., Szczepankiewicz, F., van Westen, D., Hansson, O., 2015. Extrapolation-based
references improve motion and eddy-current correction of high b-value DWI data:
application in Parkinson's disease dementia. PLoS One 10 (11), e0141825.

O'Donnell, L.J., Pasternak, O., 2015. Does diffusion MRI tell us anything about the white
matter? An overview of methods and pitfalls. Schizophr. Res. 161 (1), 133–141.

Özarslan, E., 2009. Compartment shape anisotropy (CSA) revealed by double pulsed field
gradient MR. J. Magn. Reson. 199 (1), 56–67.

Özarslan, E., Basser, P.J., 2008. Microscopic anisotropy revealed by NMR double pulsed
field gradient experiments with arbitrary timing parameters. J. Chem. Phys. 128,
154511.

Özarslan, Evren, Alexandru, V., Avram, P.J.B., Westin, C.F., 2014. Rotating field gradient
(RFG) MR for direct measurement of the diffusion orientation distribution function
(dODF). ISMRM 2014.
Özcan, A., 2005. (mathematical) necessary conditions for the selection of gradient vectors
in DTI. J. Magn. Reson. 172, 238–241.

Padhani, A.R., Liu, G., Koh, D.M., Chenevert, T.L., Thoeny, H.C., Takahara, T., Dzik-Jurasz, A.,
Ross, B.D., Van Cauteren, M., Collins, D., Hammoud, D.A., Rustin, G.J.S., Taouli, B.,
Choyke, P.L., 2009. Diffusion-weighted magnetic resonance imaging as a cancer bio-
marker: consensus and recommendations. Neoplasia 11 (2), 102–125.

Pasternak, O., Westin, C.F., Bouix, S., Seidman, L.J., Goldstein, J.M., Woo, T.U.W., Petryshen,
T.L., Mesholam-Gately, R.I., McCarley, R.W., Kikinis, R., et al., 2012. Excessive extracel-
lular volume reveals a neurodegenerative pattern in schizophrenia onset. J. Neurosci.
32 (48), 17365–17372.

Pasternak, O., Westin, C.F., Dahlben, B., Bouix, S., Kubicki, M., 2014. The extent of diffusion
MRI markers of neuroinflammation and white matter deterioration in chronic
schizophrenia. Schizophr. Res.

Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G., 1996. Diffusion tensor MR
imaging of the human brain. Radiology 201 (3), 637–648.

Price, W.S., 2009. NMR Studies of Translational Motion: Principles and Applications.
Cambridge University Press.

Ronen, I., Budde, M., Ercan, E., Annese, J., Techawiboonwong, A., Webb, A., 2013. Micro-
structural organization of axons in the human corpus callosum quantified by
diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and
post-mortem histology. Brain Struct. Funct.

Shemesh, N., Jespersen, S.N., Alexander, D.C., Cohen, Y., Drobnjak, I., Dyrby, T.B.,
Finsterbusch, J., Koch, M.A., Kuder, T., Laun, F., Lawrenz, M., Lundell, H., Mitra, P.P.,
Nilsson, M., Özarslan, E., Topgaard, D., Westin, C.F., 2016. Conventions and nomencla-
ture for double diffusion encoding (DDE) NMR and MRI. Magn. Reson. Med. 75,
82–87.

Siria, A., Poncharal, P., Biance, A.L., Fulcrand, R., Blase, X., Purcell, S.T., Bocquet, L., 2013.
Giant osmotic energy conversion measured in a single transmembrane boron nitride
nanotube. Nature 494 (7438), 455–458.

Sjölund, J., Szczepankiewicz, F., Nilsson, M., Topgaard, D., Westin, C.F., Knutsson, H., 2015.
Constrained optimization of gradient waveforms for generalized diffusion encoding.
J. Magn. Reson. 261, 157–168.

Song, S.K., Sun, S.W., Ramsbottom, M.J., Chang, C., Russell, J., Cross, A.H., 2002.
Dysmyelination revealed through MRI as increased radial (but unchanged axial) dif-
fusion of water. NeuroImage 17 (3), 1429–1436.

Stejskal, E.O., Tanner, J.E., 1965. Spin diffusionmeasurements: spin echoes in the presence
of a time-dependent field gradient. J. Chem. Phys. 42 (1), 288–292.

Szczepankiewicz, F., Lätt, J., Wirestam, R., Leemans, A., Sundgren, P.C., van Westen, D.,
Ståhlberg, F., Nilsson, M., 2013. Variability in diffusion kurtosis imaging: impact on
study design, statistical power and interpretation. NeuroImage 76, 145–154.

Szczepankiewicz, F., Lasič, S., van Westen, D., Sundgren, P.C., Englund, E., Westin, C.F.,
Ståhlberg, F., Lätt, J., Topgaard, D., Nilsson, M., 2015. Quantification of microscopic dif-
fusion anisotropy disentangles effects of orientation dispersion from microstructure:
applications in healthy volunteers and in brain tumors. NeuroImage.

Topgaard, D., 2015. Isotropic diffusion weighting using a triple-stimulated echo pulse se-
quence with bipolar gradient pulse pairs. Microporous Mesoporous Mater. 205,
48–51.

Topgaard, D., Söderman, O., 2003. Experimental determination of pore shape and size
using q-space NMR microscopy in the long diffusion-time limit. Magn. Reson.
Imaging 21 (1), 69–76.

Tuch, D.S., 2004. Q-ball imaging. Magn. Reson. Med. 52 (6), 1358–1372.
Turner, R., Le Bihan, D., Maier, J., Vavrek, R., Hedges, L.K., Pekar, J., 1990. Echo-planar im-

aging of intravoxel incoherent motion. Radiology 177 (2), 407–414.
Valette, J., Giraudeau, C., Marchadour, C., Djemai, B., Geffroy, F., Ghaly, M.A., Le Bihan, D.,

Hantraye, P., Lebon, V., Lethimonnier, F., 2012. A new sequence for single-shot
diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor. Magn.
Reson. Med. 68 (6), 1705–1712.

Vos, S.B., Jones, D.K., Jeurissen, B., Viergever, M., Leemans, A., 2012. The Influence of Com-
plex White Matter Architecture on the Mean Diffusivity in Diffusion Tensor MRI of
the Human Brain.

Westin, C.F., Pasternak, O., Knutsson, H., 2012. Rotationally invariant gradient schemes for
diffusion MRI. Proceedings of the ISMRM Annual Meeting (ISMRM’12) (May).

Westin, C.F., Nilsson, M., Pasternak, O., Knutsson, H., 2013. Diffusion tensors from double-
PFG of the human brain. 21st Annual Meeting & Exhibition (ISMRM 2013), 20–26
April 2013, Salt Lake City, Utah, USA. The International Society for Magnetic Reso-
nance in Medicine.

Westin, C.F., Nilsson, M., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D.,
Knutsson, H., 2014a. In-vivo diffusion q-space trajectory imaging. ISMRM 2014.

Westin, C.F., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D., Knutsson, H.,
Nilsson, M., 2014b. Measurement tensors in diffusion MRI: generalizing the concept of
diffusion encoding. Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2014. Springer, pp. 209–216.

Wetscherek, A., Stieltjes, B., Laun, F.B., 2014. Flow-compensated intravoxel incoherent
motion diffusion imaging. Magn. Reson. Med.

Wong, E.C., Cox, R.W., Song, A.W., 1995. Optimized isotropic diffusion weighting. Magn.
Reson. Med. 34 (2), 139–143.

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: practical
in vivo neurite orientation dispersion and density imaging of the human brain.
NeuroImage 61 (4), 1000–1016.

http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0085
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0085
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0090
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0090
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0095
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0095
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0095
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0100
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0100
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0105
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0105
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0105
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0110
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0110
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0115
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0115
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0115
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0120
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0120
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0120
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0125
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0125
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0130
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0130
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0135
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0135
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0140
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0140
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0145
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0145
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0150
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0150
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0150
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0150
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0155
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0155
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0160
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0160
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0165
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0165
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0165
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0170
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0170
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0170
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0175
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0175
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0180
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0180
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0185
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0185
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0190
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0190
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0195
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0195
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0200
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0200
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0200
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0205
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0205
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0210
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0210
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0210
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0215
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0215
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0220
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0220
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0220
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0225
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0225
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0230
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0230
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0235
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0235
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0235
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0240
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0240
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0240
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0245
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0245
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0250
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0250
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0255
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0255
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0255
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0260
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0260
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0260
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0265
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0265
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0270
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0270
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0275
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0275
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0275
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0275
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0280
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0280
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0280
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0285
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0285
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf1290
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf1290
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0290
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0290
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0295
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0295
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0300
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0300
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0305
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0305
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0305
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0310
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0310
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0310
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0315
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0315
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0315
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0320
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0325
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0325
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0330
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0330
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0330
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0335
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0335
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0335
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0340
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0340
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0345
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0345
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0345
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0345
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0350
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0355
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0355
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0355
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0360
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0360
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0365
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0365
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0370
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0370
http://refhub.elsevier.com/S1053-8119(16)00148-8/rf0370

	Q-�space trajectory imaging for multidimensional diffusion MRI of the human brain
	Introduction
	Theory
	Defining the b-tensor
	Defining a distribution over diffusion tensors
	Diffusion modeling and estimation
	Scalar invariants derived from QTI
	Invariants from the mean of the tensor distribution
	Invariants from the covariance of the tensor distribution

	Normalized scalar invariants derived from QTI
	Normalized size variance
	Micro- and macroscopic anisotropy
	Microscopic orientation coherence

	Connections to DKI
	Disentangling bulk and shear kurtosis by QTI

	Estimation of the tensor covariance

	Method
	Implementation
	Subjects
	Analysis

	Results
	Example clinical study of schizophrenia

	Discussion
	Conclusions
	Acknowledgments
	Appendix A
	A.1. Vector and matrix notation of higher order tensors
	A.2. Inner and outer products
	A.3. Isotropic 4th order tensors
	A.4. Cumulant expansion up to six-order tensor
	A.5. Taylor expansion
	A.6. Comparison with DKI

	References




